Grujić Dušan, Vasiljević Darko, Pantelić Dejan, Tomić Ljubiša, Stamenković Zoran, Jelenković Branislav
Opt Express. 2018 May 28;26(11):14143-14158. doi: 10.1364/OE.26.014143.
Thermal cameras were constructed long ago, but working principles and complex technologies still limit their resolution, total number of pixels, and sensitivity. We address the problem of finding a new sensing mechanism surpassing existing limits of thermal radiation detection. Here we reveal the new mechanism on the butterfly wing, whose wing-scales act as pixels of an imaging array on a thermal detector. We observed that the tiniest features of a Morpho butterfly wing-scale match the mean free path of air molecules at atmospheric pressure - a condition when the radiation-induced heating produces an additional, thermophoretic force that deforms the wing-scales. The resulting deformation field was imaged holographically with mK temperature sensitivity and 200 Hz response speed. By imitating butterfly wing-scales, the effect can be further amplified through a suitable choice of material, working pressure, sensor design, and detection method. The technique is universally applicable to any nano-patterned, micro-scale system in other spectral ranges, such as UV and terahertz.
热成像相机早就被制造出来了,但工作原理和复杂技术仍然限制着它们的分辨率、像素总数和灵敏度。我们致力于解决寻找一种超越现有热辐射检测极限的新型传感机制的问题。在此,我们揭示了蝴蝶翅膀上的新机制,其翅鳞充当热探测器上成像阵列的像素。我们观察到,闪蝶翅鳞的最微小特征与大气压力下空气分子的平均自由程相匹配——在这种条件下,辐射诱导加热会产生额外的热泳力,使翅鳞变形。利用毫开尔文温度灵敏度和200赫兹响应速度,通过全息成像技术对由此产生的变形场进行了成像。通过模仿蝴蝶翅鳞,通过适当选择材料、工作压力、传感器设计和检测方法,可以进一步放大这种效应。该技术普遍适用于其他光谱范围(如紫外线和太赫兹)中的任何纳米图案化微尺度系统。