Suppr超能文献

二维 CHNHPbI 钙钛矿和 CHNHPbI/石墨烯杂化材料的降解。

Degradation of Two-Dimensional CHNHPbI Perovskite and CHNHPbI/Graphene Heterostructure.

机构信息

Department of Materials Science and Engineering , Monash University , Wellington Road , Clayton , Victoria 3800 , Australia.

College of Electronic Science and Technology , Shenzhen University , Shenzhen 518000 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2018 Jul 18;10(28):24258-24265. doi: 10.1021/acsami.8b04310. Epub 2018 Jul 3.

Abstract

Hybrid organic-inorganic metal halide perovskites have been considered as promising materials for boosting the performance of photovoltaics and optoelectronics. Reduced-dimensional condiments and tunable properties render two-dimensional (2D) perovskite as novel building blocks for constructing micro-/nanoscale devices in high-performance optoelectronic applications. However, the stability is still one major obstacle for long-term practical use. Herein, we provide microscale insights into the degradation kinetics of 2D CHNHPbI (MAPbI) perovskite and CHNHPbI/graphene heterostructures. It is found that the degradation is mainly caused by cation evaporation, which consequently affects the microstructure, light-matter interaction, and the photoluminescence quantum yield efficiency of the 2D perovskite. Interestingly, the encapsulation of perovskite by monolayer graphene can largely preserve the structure of the perovskite nanosheet and maintain reasonable optical properties upon exposure to high temperature and humidity. The heterostructure consisting of perovskite and another 2D impermeable material affords new possibilities to construct high-performance and stable perovskite-based optoelectronic devices.

摘要

混合有机-无机金属卤化物钙钛矿被认为是提高光电性能的有前途的材料。低维钙钛矿和可调谐性质使二维(2D)钙钛矿成为构建高性能光电应用中微/纳米尺度器件的新型构建块。然而,稳定性仍然是长期实际应用的主要障碍。在此,我们提供了对二维 CHNHPbI(MAPbI)钙钛矿和 CHNHPbI/石墨烯异质结构降解动力学的微观洞察。研究发现,降解主要是由阳离子蒸发引起的,这会影响二维钙钛矿的微结构、光物质相互作用和光致发光量子产率效率。有趣的是,单层石墨烯对钙钛矿的封装可以在暴露于高温和高湿度时在很大程度上保持钙钛矿纳米片的结构并保持合理的光学性能。由钙钛矿和另一种二维不渗透材料组成的异质结构为构建高性能和稳定的基于钙钛矿的光电设备提供了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验