Suppr超能文献

一种用于测量纵向数据中潜在增长的多级高阶项目反应理论模型。

A Multilevel Higher Order Item Response Theory Model for Measuring Latent Growth in Longitudinal Data.

作者信息

Huang Hung-Yu

机构信息

University of Taipei, Taiwan.

出版信息

Appl Psychol Meas. 2015 Jul;39(5):362-372. doi: 10.1177/0146621614568112. Epub 2015 Jan 15.

Abstract

In educational and psychological testing, individuals are often repeatedly measured to assess the changes in their abilities over time or their latent trait growth. If a test consists of several subtests, the latent traits may have a higher order structure, and traditional item response theory (IRT) models for longitudinal data are no longer applicable. In this study, various multilevel higher order item response theory (ML-HIRT) models for simultaneously measuring growth in the second- and first-order latent traits of dichotomous and polytomous items are proposed. A series of simulations conducted using the WinBUGS software with Markov chain Monte Carlo (MCMC) methods reveal that the parameters could be recovered satisfactorily and that latent trait estimation was reliable across measurement times. The application of the ML-HIRT model to longitudinal data sets is illustrated with two empirical examples.

摘要

在教育和心理测试中,经常会对个体进行重复测量,以评估其能力随时间的变化或潜在特质的发展。如果一个测试由几个子测试组成,潜在特质可能具有更高阶的结构,而传统的纵向数据项目反应理论(IRT)模型就不再适用了。在本研究中,提出了各种多水平高阶项目反应理论(ML-HIRT)模型,用于同时测量二分和多分项目的二阶和一阶潜在特质的发展。使用WinBUGS软件和马尔可夫链蒙特卡罗(MCMC)方法进行的一系列模拟表明,参数能够得到令人满意的恢复,并且潜在特质估计在各个测量时间都是可靠的。通过两个实证例子说明了ML-HIRT模型在纵向数据集上的应用。

相似文献

1
A Multilevel Higher Order Item Response Theory Model for Measuring Latent Growth in Longitudinal Data.
Appl Psychol Meas. 2015 Jul;39(5):362-372. doi: 10.1177/0146621614568112. Epub 2015 Jan 15.
2
Multilevel IRT using dichotomous and polytomous response data.
Br J Math Stat Psychol. 2005 May;58(Pt 1):145-72. doi: 10.1348/000711005X38951.
3
Mixture IRT Model With a Higher-Order Structure for Latent Traits.
Educ Psychol Meas. 2017 Apr;77(2):275-304. doi: 10.1177/0013164416640327. Epub 2016 Apr 1.
4
Latent growth modeling of IRT versus CTT measured longitudinal latent variables.
Stat Methods Med Res. 2020 Apr;29(4):962-986. doi: 10.1177/0962280219856375. Epub 2019 Jul 4.
5
Using SAS PROC MCMC for Item Response Theory Models.
Educ Psychol Meas. 2015 Aug;75(4):585-609. doi: 10.1177/0013164414551411. Epub 2014 Sep 25.
6
Multivariate Higher-Order IRT Model and MCMC Algorithm for Linking Individual Participant Data From Multiple Studies.
Front Psychol. 2019 Jun 12;10:1328. doi: 10.3389/fpsyg.2019.01328. eCollection 2019.
7
Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach.
Educ Psychol Meas. 2016 Aug;76(4):662-684. doi: 10.1177/0013164415608418. Epub 2015 Oct 12.
8
Mixture Random-Effect IRT Models for Controlling Extreme Response Style on Rating Scales.
Front Psychol. 2016 Nov 2;7:1706. doi: 10.3389/fpsyg.2016.01706. eCollection 2016.
9
Latent growth curve analysis with dichotomous items: Comparing four approaches.
Br J Math Stat Psychol. 2016 Feb;69(1):43-61. doi: 10.1111/bmsp.12058. Epub 2015 Jun 7.

引用本文的文献

1
A didactic illustration of writing skill growth through a longitudinal diagnostic classification model.
Front Psychol. 2025 Jan 15;15:1521808. doi: 10.3389/fpsyg.2024.1521808. eCollection 2024.
2
Bayesian Analysis of a Quantile Multilevel Item Response Theory Model.
Front Psychol. 2021 Jan 8;11:607731. doi: 10.3389/fpsyg.2020.607731. eCollection 2020.
3
A Sequential Process Model for Cognitive Diagnostic Assessment With Repeated Attempts.
Appl Psychol Meas. 2019 Oct;43(7):495-511. doi: 10.1177/0146621618813111. Epub 2018 Dec 12.
4
Assessing Item-Level Fit for Higher Order Item Response Theory Models.
Appl Psychol Meas. 2018 Nov;42(8):644-659. doi: 10.1177/0146621618762740. Epub 2018 Mar 21.
5
Mixture IRT Model With a Higher-Order Structure for Latent Traits.
Educ Psychol Meas. 2017 Apr;77(2):275-304. doi: 10.1177/0013164416640327. Epub 2016 Apr 1.
7
Mixture Random-Effect IRT Models for Controlling Extreme Response Style on Rating Scales.
Front Psychol. 2016 Nov 2;7:1706. doi: 10.3389/fpsyg.2016.01706. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验