He Yong, Cui Zhongmin, Osterlind Steven J
ACT, Inc., Iowa City, IA, USA.
University of Missouri, Columbia, USA.
Appl Psychol Meas. 2015 Nov;39(8):613-626. doi: 10.1177/0146621615587003. Epub 2015 May 18.
Common items play an important role in item response theory (IRT) true score equating under the common-item nonequivalent groups design. Biased item parameter estimates due to common item outliers can lead to large errors in equated scores. Current methods used to screen for common item outliers mainly focus on the detection and elimination of those items, which may lead to inadequate content representation for the common items. To reduce the impact of inconsistency in item parameter estimates while maintaining content representativeness, the authors propose two robust scale transformation methods based on two weighting methods: the Area-Weighted method and the Least Absolute Values (LAV) method. Results from two simulation studies indicate that these robust scale transformation methods performed as well as the Stocking-Lord method in the absence of common item outliers and, more importantly, outperformed the Stocking-Lord method when a single outlying common item was simulated.
在共同项目非等组设计下,共同项目在项目反应理论(IRT)真分数等值中起着重要作用。由于共同项目异常值导致的有偏项目参数估计可能会在等值分数中产生较大误差。当前用于筛选共同项目异常值的方法主要集中在这些项目的检测和剔除上,这可能会导致共同项目的内容代表性不足。为了在保持内容代表性的同时减少项目参数估计不一致的影响,作者基于两种加权方法提出了两种稳健的量表转换方法:面积加权法和最小绝对值(LAV)法。两项模拟研究的结果表明,在没有共同项目异常值的情况下,这些稳健的量表转换方法与斯托金-洛德方法表现相当,更重要的是,当模拟单个异常共同项目时,它们的表现优于斯托金-洛德方法。