Suppr超能文献

存在异常常见项目时的新型稳健尺度变换方法。

New Robust Scale Transformation Methods in the Presence of Outlying Common Items.

作者信息

He Yong, Cui Zhongmin, Osterlind Steven J

机构信息

ACT, Inc., Iowa City, IA, USA.

University of Missouri, Columbia, USA.

出版信息

Appl Psychol Meas. 2015 Nov;39(8):613-626. doi: 10.1177/0146621615587003. Epub 2015 May 18.

Abstract

Common items play an important role in item response theory (IRT) true score equating under the common-item nonequivalent groups design. Biased item parameter estimates due to common item outliers can lead to large errors in equated scores. Current methods used to screen for common item outliers mainly focus on the detection and elimination of those items, which may lead to inadequate content representation for the common items. To reduce the impact of inconsistency in item parameter estimates while maintaining content representativeness, the authors propose two robust scale transformation methods based on two weighting methods: the Area-Weighted method and the Least Absolute Values (LAV) method. Results from two simulation studies indicate that these robust scale transformation methods performed as well as the Stocking-Lord method in the absence of common item outliers and, more importantly, outperformed the Stocking-Lord method when a single outlying common item was simulated.

摘要

在共同项目非等组设计下,共同项目在项目反应理论(IRT)真分数等值中起着重要作用。由于共同项目异常值导致的有偏项目参数估计可能会在等值分数中产生较大误差。当前用于筛选共同项目异常值的方法主要集中在这些项目的检测和剔除上,这可能会导致共同项目的内容代表性不足。为了在保持内容代表性的同时减少项目参数估计不一致的影响,作者基于两种加权方法提出了两种稳健的量表转换方法:面积加权法和最小绝对值(LAV)法。两项模拟研究的结果表明,在没有共同项目异常值的情况下,这些稳健的量表转换方法与斯托金-洛德方法表现相当,更重要的是,当模拟单个异常共同项目时,它们的表现优于斯托金-洛德方法。

相似文献

1
New Robust Scale Transformation Methods in the Presence of Outlying Common Items.
Appl Psychol Meas. 2015 Nov;39(8):613-626. doi: 10.1177/0146621615587003. Epub 2015 May 18.
2
Evaluating Robust Scale Transformation Methods With Multiple Outlying Common Items Under IRT True Score Equating.
Appl Psychol Meas. 2020 Jun;44(4):296-310. doi: 10.1177/0146621619886050. Epub 2019 Nov 15.
3
Application of Sampling Variance of Item Response Theory Parameter Estimates in Detecting Outliers in Common Item Equating.
Appl Psychol Meas. 2022 Sep;46(6):529-547. doi: 10.1177/01466216221108122. Epub 2022 Jun 15.
4
Evaluating Different Equating Setups in the Continuous Item Pool Calibration for Computerized Adaptive Testing.
Front Psychol. 2019 Jun 6;10:1277. doi: 10.3389/fpsyg.2019.01277. eCollection 2019.
5
A Bayesian Robust IRT Outlier-Detection Model.
Appl Psychol Meas. 2017 May;41(3):195-208. doi: 10.1177/0146621616679394. Epub 2016 Nov 28.
6
Outlier Detection Using t-test in Rasch IRT Equating under NEAT Design.
Appl Psychol Meas. 2023 Jan;47(1):34-47. doi: 10.1177/01466216221124045. Epub 2022 Sep 6.
7
Multiple Equating of Separate IRT Calibrations.
Psychometrika. 2016 Oct 3. doi: 10.1007/s11336-016-9517-x.
8
Asymptotic Variance of Linking Coefficient Estimators for Polytomous IRT Models.
Appl Psychol Meas. 2018 May;42(3):192-205. doi: 10.1177/0146621617721249. Epub 2017 Aug 24.
9
A Review of the Effects on IRT Item Parameter Estimates with a Focus on Misbehaving Common Items in Test Equating.
Front Psychol. 2010 Oct 15;1:167. doi: 10.3389/fpsyg.2010.00167. eCollection 2010.
10
Item Response Theory True Score Equating for the Bifactor Model Under the Common-Item Nonequivalent Groups Design.
Appl Psychol Meas. 2022 Sep;46(6):479-493. doi: 10.1177/01466216221108995. Epub 2022 Jun 17.

引用本文的文献

1
Outlier Detection Using t-test in Rasch IRT Equating under NEAT Design.
Appl Psychol Meas. 2023 Jan;47(1):34-47. doi: 10.1177/01466216221124045. Epub 2022 Sep 6.
2
Application of Sampling Variance of Item Response Theory Parameter Estimates in Detecting Outliers in Common Item Equating.
Appl Psychol Meas. 2022 Sep;46(6):529-547. doi: 10.1177/01466216221108122. Epub 2022 Jun 15.
3
Evaluating Robust Scale Transformation Methods With Multiple Outlying Common Items Under IRT True Score Equating.
Appl Psychol Meas. 2020 Jun;44(4):296-310. doi: 10.1177/0146621619886050. Epub 2019 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验