Suppr超能文献

基于柱[ n]芳烃构建的刺激响应性超分子组装体

Stimuli-Responsive Supramolecular Assemblies Constructed from Pillar[ n]arenes.

作者信息

Kakuta Takahiro, Yamagishi Tada-Aki, Ogoshi Tomoki

机构信息

Graduate School of Natural Science and Technology , Kanazawa University , Kakuma-machi , Kanazawa , Ishikawa 920-1192 , Japan.

WPI Nano Life Science Institute , Kanazawa University , Kakuma-machi , Kanazawa , 920-1192 , Japan.

出版信息

Acc Chem Res. 2018 Jul 17;51(7):1656-1666. doi: 10.1021/acs.accounts.8b00157. Epub 2018 Jun 11.

Abstract

Supramolecular assemblies are constructed from at least two molecules through various noncovalent bonding modes such as hydrogen bonding, cationic-anionic electrostatic interactions, aromatic interactions, metal-ligand bonding, hydrophobic-hydrophilic interactions, and charge-transfer interactions. Owing to the dynamic and reversible nature of these noncovalent bonds, the assembly and disassembly of these molecules are dynamic and reversible. Molecules self-assemble to form the most conformationally and thermally stable structures through these noncovalent interactions. The formation of these noncovalent interactions is affected by the properties of the environment such as its polarity, temperature, and pressure; thus, the structure of the assembled compounds is determined by the environment. The sizes and shapes of the supramolecular assemblies play an important role in determining their functions. Therefore, controlling their size and shape is important. Introducing stimuli-responsive groups into supramolecular assemblies is a useful way to control their size and shape. Controlling supramolecular structures and motions with external stimuli, i.e., periodic and rotational motions on the molecular scale, structures, and molecular weights at the nano- and micrometer scales, visible shrinking/expansion, and adhesive behavior at a macroscopic scale, is very useful. Macrocyclic host molecules are useful building blocks for the construction of stimuli-responsive supramolecular assemblies because their host ability can be tuned by changing the shape and electron density of the cavity. The size-dependent hosting ability of the cavity is similar to the lock-and-key model in biological systems. Stimuli-responsive supramolecular assemblies have been developed by using macrocyclic compounds such as cyclodextrins, cucurbit[ n]urils, calix[ n]arenes, crown ethers, and related macrocycles. We successfully developed new pillar-shaped macrocyclic hosts in 2008, which were coined pillar[ n]arenes. The unique structural features of pillar[ n]arenes allowed new properties. This year, 2018, marks one decade of research into pillar[ n]arene chemistry, and in that time the properties of pillar[ n]arenes have been widely investigated by various scientists. Thanks to their efforts, the characteristic properties of pillar[ n]arenes that result from their pillar-shaped structures have been elucidated. Their host ability, the chirality of their pillar-shaped structure, and their versatile functionality are unique features of pillar[ n]arenes not seen in other well-known hosts, and these properties are very useful for the creation of new stimuli-responsive supramolecular assemblies. In this Account, we describe photo-, pH- and redox-responsive supramolecular assemblies based on pillar[ n]arenes. First, we discuss molecular-scale stimuli-responsive supramolecular assemblies, i.e., pseudorotaxanes, pseudocatenanes, and supramolecular polymers. We also highlight subnanometer- and micrometer-scale stimuli-responsive supramolecular assembles such as particles and vesicles. Finally, we discuss the macroscopic stimuli-responsive structural changes of surfaces and gels. This Account will provide useful information for researchers working on not only pillar[ n]arene chemistry but also the chemistry of other macrocyclic hosts, and it will inspire new discoveries in the field of supramolecular assemblies and systems containing macrocyclic hosts.

摘要

超分子组装体是由至少两个分子通过各种非共价键合模式构建而成的,这些模式包括氢键、阴阳离子静电相互作用、芳香相互作用、金属-配体键合、疏水-亲水相互作用以及电荷转移相互作用。由于这些非共价键具有动态可逆的性质,这些分子的组装和解组装过程也是动态可逆的。分子通过这些非共价相互作用自组装形成构象和热稳定性最高的结构。这些非共价相互作用的形成受环境性质的影响,如极性、温度和压力;因此,组装化合物的结构由环境决定。超分子组装体的尺寸和形状在决定其功能方面起着重要作用。因此,控制它们的尺寸和形状很重要。将刺激响应基团引入超分子组装体是控制其尺寸和形状的一种有效方法。利用外部刺激控制超分子结构和运动,即在分子尺度上的周期性和旋转运动、纳米和微米尺度上的结构和分子量、可见的收缩/膨胀以及宏观尺度上的粘附行为,是非常有用的。大环主体分子是构建刺激响应性超分子组装体的有用构建单元,因为它们的主体能力可以通过改变空腔的形状和电子密度来调节。空腔的尺寸依赖性主体能力类似于生物系统中的锁钥模型。通过使用环糊精、葫芦[n]脲、杯[n]芳烃、冠醚等大环化合物,已经开发出了刺激响应性超分子组装体。2008年,我们成功开发了新型柱状大环主体,将其命名为柱[n]芳烃。柱[n]芳烃独特的结构特征赋予了其新的性质。2018年是对柱[n]芳烃化学进行研究的第十个年头,在此期间,众多科学家对柱[n]芳烃的性质进行了广泛研究。由于他们的努力,柱[n]芳烃因其柱状结构而具有的独特性质得以阐明。它们的主体能力、柱状结构的手性以及多功能性是柱[n]芳烃独有的特征,在其他知名主体中未见,这些性质对于创建新型刺激响应性超分子组装体非常有用。在本综述中,我们描述了基于柱[n]芳烃的光、pH和氧化还原响应性超分子组装体。首先,我们讨论分子尺度的刺激响应性超分子组装体,即准轮烷、准索烃和超分子聚合物。我们还重点介绍了亚纳米和微米尺度的刺激响应性超分子组装体,如颗粒和囊泡。最后,我们讨论表面和凝胶的宏观刺激响应性结构变化。本综述将为从事柱[n]芳烃化学以及其他大环主体化学研究的人员提供有用信息,并将激发在包含大环主体的超分子组装体和系统领域的新发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验