Suppr超能文献

使用分解支持向量机自动生成和检测手部伪影图。

Automatic hand phantom map generation and detection using decomposition support vector machines.

机构信息

BME Lab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Quellgasse 21, 2502, Biel, Switzerland.

Integrated Circuits Laboratory (ICLAB), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladiére 71b, 2002, Neuchâtel, Switzerland.

出版信息

Biomed Eng Online. 2018 Jun 11;17(1):74. doi: 10.1186/s12938-018-0502-8.

Abstract

BACKGROUND

There is a need for providing sensory feedback for myoelectric prosthesis users. Providing tactile feedback can improve object manipulation abilities, enhance the perceptual embodiment of myoelectric prostheses and help reduce phantom limb pain. Many amputees have referred sensation from their missing hand on their residual limbs (phantom maps). This skin area can serve as a target for providing amputees with non-invasive tactile sensory feedback. One of the challenges of providing sensory feedback on the phantom map is to define the accurate boundary of each phantom digit because the phantom map distribution varies from person to person.

METHODS

In this paper, automatic phantom map detection methods based on four decomposition support vector machine algorithms and three sampling methods are proposed, complemented by fuzzy logic and active learning strategies. The algorithms and methods are tested on two databases: the first one includes 400 generated phantom maps, whereby the phantom map generation algorithm was based on our observation of the phantom maps to ensure smooth phantom digit edges, variety, and representativeness. The second database includes five reported phantom map images and transformations thereof. The accuracy and training/ classification time of each algorithm using a dense stimulation array (with 100 [Formula: see text] 100 actuators) and two coarse stimulation arrays (with 3 [Formula: see text] 5 and 4 [Formula: see text] 6 actuators) are presented and compared.

RESULTS

Both generated and reported phantom map images share the same trends. Majority-pooling sampling effectively increases the training size, albeit introducing some noise, and thus produces the smallest error rates among the three proposed sampling methods. For different decomposition architectures, one-vs-one reduces unclassified regions and in general has higher classification accuracy than the other architectures. By introducing fuzzy logic to bias the penalty parameter, the influence of pooling-induced noise is reduced. Moreover, active learning with different strategies was also tested and shown to improve the accuracy by introducing more representative training samples. Overall, dense arrays employing one-vs-one fuzzy support vector machines with majority-pooling sampling have the smallest average absolute error rate (8.78% for generated phantom maps and 11.5% for reported and transformed phantom map images). The detection accuracy of coarse arrays was found to be significantly lower than for dense array.

CONCLUSIONS

The results demonstrate the effectiveness of support vector machines using a dense array in detecting refined phantom map shapes, whereas coarse arrays are unsuitable for this task. We therefore propose a two-step approach, using first a non-wearable dense array to detect an accurate phantom map shape, then to apply a wearable coarse stimulation array customized according to the detection results. The proposed methodology can be used as a tool for helping haptic feedback designers and for tracking the evolvement of phantom maps.

摘要

背景

为肌电假肢使用者提供感觉反馈是必要的。提供触觉反馈可以提高物体操作能力,增强肌电假肢的知觉体现,并有助于减轻幻肢痛。许多截肢者在残肢上感受到缺失手的感觉(幻肢图)。这片皮肤区域可以作为为截肢者提供非侵入性触觉感觉反馈的目标。提供幻肢图上的感觉反馈的挑战之一是定义每个幻指的准确边界,因为幻肢图的分布因人而异。

方法

在本文中,提出了基于四种分解支持向量机算法和三种采样方法的自动幻肢图检测方法,并辅以模糊逻辑和主动学习策略。该算法和方法在两个数据库上进行了测试:第一个数据库包含 400 个生成的幻肢图,幻肢图生成算法是基于我们对幻肢图的观察,以确保幻肢数字边缘平滑、多样化和代表性。第二个数据库包含五个报告的幻肢图图像及其变换。呈现并比较了使用密集刺激阵列(100×100 个执行器)和两个粗刺激阵列(3×5 和 4×6 个执行器)的每个算法的准确性和训练/分类时间。

结果

生成和报告的幻肢图图像具有相同的趋势。多数抽样有效地增加了训练规模,尽管引入了一些噪声,但在三种提出的抽样方法中产生的误差最小。对于不同的分解架构,一对一减少了未分类区域,并且通常比其他架构具有更高的分类精度。通过引入模糊逻辑来偏向惩罚参数,可以减少池化诱导噪声的影响。此外,还测试并展示了不同策略的主动学习如何通过引入更具代表性的训练样本来提高准确性。总体而言,使用一对一模糊支持向量机和多数抽样的密集阵列具有最小的平均绝对误差率(生成幻肢图的 8.78%和报告及变换幻肢图图像的 11.5%)。发现粗阵列的检测精度明显低于密集阵列。

结论

结果表明,使用密集阵列的支持向量机在检测精细幻肢图形状方面非常有效,而粗阵列不适合此任务。因此,我们提出了一种两步法,首先使用非穿戴式密集阵列检测准确的幻肢图形状,然后根据检测结果应用定制的可穿戴粗刺激阵列。所提出的方法可作为帮助触觉反馈设计师的工具,并用于跟踪幻肢图的演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/504f/5996576/1c51b6fe7ed8/12938_2018_502_Fig1_HTML.jpg

相似文献

1
Automatic hand phantom map generation and detection using decomposition support vector machines.
Biomed Eng Online. 2018 Jun 11;17(1):74. doi: 10.1186/s12938-018-0502-8.
2
Deep learning-based artificial vision for grasp classification in myoelectric hands.
J Neural Eng. 2017 Jun;14(3):036025. doi: 10.1088/1741-2552/aa6802. Epub 2017 May 3.
4
Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback.
IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):112-20. doi: 10.1109/TNSRE.2012.2217989. Epub 2012 Sep 28.
5
A comparative study of surface EMG classification by fuzzy relevance vector machine and fuzzy support vector machine.
Physiol Meas. 2015 Feb;36(2):191-206. doi: 10.1088/0967-3334/36/2/191. Epub 2015 Jan 9.
6
Sensory qualities of the phantom hand map in the residual forearm of amputees.
J Rehabil Med. 2016 Apr;48(4):365-70. doi: 10.2340/16501977-2074.
8
Optimal classification for the diagnosis of duchenne muscular dystrophy images using support vector machines.
Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1755-63. doi: 10.1007/s11548-015-1312-0. Epub 2015 Oct 17.
9
Robust support vector machine-trained fuzzy system.
Neural Netw. 2014 Feb;50:154-65. doi: 10.1016/j.neunet.2013.11.013. Epub 2013 Nov 21.
10

引用本文的文献

1
FeetBack-Redirecting touch sensation from a prosthetic hand to the human foot.
Front Neurosci. 2022 Oct 26;16:1019880. doi: 10.3389/fnins.2022.1019880. eCollection 2022.
2
Advancing Artificial Intelligence in Sensors, Signals, and Imaging Informatics.
Yearb Med Inform. 2019 Aug;28(1):115-117. doi: 10.1055/s-0039-1677943. Epub 2019 Aug 16.

本文引用的文献

1
Sensory qualities of the phantom hand map in the residual forearm of amputees.
J Rehabil Med. 2016 Apr;48(4):365-70. doi: 10.2340/16501977-2074.
2
Characterization of evoked tactile sensation in forearm amputees with transcutaneous electrical nerve stimulation.
J Neural Eng. 2015 Dec;12(6):066002. doi: 10.1088/1741-2560/12/6/066002. Epub 2015 Sep 24.
4
An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs.
Sci Transl Med. 2014 Oct 8;6(257):257re6. doi: 10.1126/scitranslmed.3008933.
5
A neural interface provides long-term stable natural touch perception.
Sci Transl Med. 2014 Oct 8;6(257):257ra138. doi: 10.1126/scitranslmed.3008669.
6
Restoring tactile and proprioceptive sensation through a brain interface.
Neurobiol Dis. 2015 Nov;83:191-8. doi: 10.1016/j.nbd.2014.08.029. Epub 2014 Sep 6.
7
Phantom phenomena and body scheme after limb amputation: a literature review.
Neurol Neurochir Pol. 2014 Jan-Feb;48(1):52-9. doi: 10.1016/j.pjnns.2013.03.002. Epub 2014 Jan 23.
8
Restoring natural sensory feedback in real-time bidirectional hand prostheses.
Sci Transl Med. 2014 Feb 5;6(222):222ra19. doi: 10.1126/scitranslmed.3006820.
9
Sensory feedback in upper limb prosthetics.
Expert Rev Med Devices. 2013 Jan;10(1):45-54. doi: 10.1586/erd.12.68.
10
Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback.
IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):112-20. doi: 10.1109/TNSRE.2012.2217989. Epub 2012 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验