Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6614-6619. doi: 10.1073/pnas.1803261115. Epub 2018 Jun 11.
We present both an innovative theoretical model and an experimental validation of a molecular gas optically pumped far-infrared (OPFIR) laser at 0.25 THz that exhibits 10× greater efficiency (39% of the Manley-Rowe limit) and 1,000× smaller volume than comparable commercial lasers. Unlike previous OPFIR-laser models involving only a few energy levels that failed even qualitatively to match experiments at high pressures, our ab initio theory matches experiments quantitatively, within experimental uncertainties with no free parameters, by accurately capturing the interplay of millions of degrees of freedom in the laser. We show that previous OPFIR lasers were inefficient simply by being too large and that high powers favor high pressures and small cavities. We believe that these results will revive interest in OPFIR laser as a powerful and compact source of terahertz radiation.
我们提出了一个创新的理论模型,并对 0.25 THz 的分子气体光泵远红外(OPFIR)激光进行了实验验证,该激光的效率比可比商业激光器高出 10 倍(达到了 Manley-Rowe 极限的 39%),体积小了 1000 倍。与以前仅涉及少数能级的 OPFIR 激光模型不同,这些模型甚至在高压下定性上都无法与实验匹配,我们的从头计算理论通过准确捕捉激光中数百万自由度的相互作用,在没有自由参数的情况下,在实验不确定性范围内对实验进行了定量匹配。我们表明,以前的 OPFIR 激光效率不高,仅仅是因为它们太大了,而高功率有利于高压和小腔。我们相信,这些结果将重新激发人们对作为强大紧凑太赫兹辐射源的 OPFIR 激光的兴趣。