Suppr超能文献

优化传感器阵列可识别所有天然氨基酸。

An Optimized Sensor Array Identifies All Natural Amino Acids.

机构信息

Organisch-Chemisches Institut , Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270 , 69120 Heidelberg , Germany.

Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands.

出版信息

ACS Sens. 2018 Aug 24;3(8):1562-1568. doi: 10.1021/acssensors.8b00371. Epub 2018 Jun 26.

Abstract

Wet-chemical discrimination of amino acids is still a challenge due to their structural similarity. Here, an optimized self-assembled eight-member sensor array is reported. The optimized sensor array stems from the combination of elements of different tongues, containing poly( para-phenyleneethynylene)s (PPE) and a supercharged green fluorescent protein (GFP) variant. The responsivity of the sensor dyes (PPEs and GFP) is enhanced in elements that contain adjuvants, such as metal salts but also cucurbit[7]uril (CB[7]) and acridine orange; a suitable and robust eight element array discriminates all of the 20 natural amino acids in water at 25 mM concentration with 100% accuracy. The results group well to the amino acid type, i.e., hydrophobic, polar, and aromatic ones.

摘要

由于氨基酸的结构相似,因此对其进行湿法化学鉴别仍然具有挑战性。在这里,我们报告了一种经过优化的自组装八元传感器阵列。该优化后的传感器阵列源于不同“舌头”元素的结合,包含聚对苯乙炔(PPE)和超荷正绿色荧光蛋白(GFP)变体。在含有助剂(如金属盐)的元素中,传感器染料(PPE 和 GFP)的响应性增强;而葫芦[7]脲(CB[7])和吖啶橙等助剂也有增强效果。一个合适且稳健的八元阵列可以在 25mM 浓度下以 100%的准确度区分所有 20 种天然氨基酸。结果与氨基酸类型(疏水性、极性和芳香族)很好地吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验