Suppr超能文献

基于可传播性和流量的框架来分析复杂网络动态。

Framework based on communicability and flow to analyze complex network dynamics.

机构信息

Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain.

Namur Institute for Complex Systems (naXys), Department of Mathematics, University of Namur, Rempart de la Vierge 8, B 5000 Namur, Belgium.

出版信息

Phys Rev E. 2018 May;97(5-1):052301. doi: 10.1103/PhysRevE.97.052301.

Abstract

Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.

摘要

图论是一个被广泛应用和确立的领域,为复杂网络的特征化提供了强大的工具。通过对自持续振荡(同步模式)或传播过程(如随机漫步)的相互作用中观察到的集体动力学的研究,网络的复杂拓扑结构也可以被研究。然而,网络通常是从形成动态系统的实际数据中推断出来的,这些数据与用于揭示其拓扑特征的系统不同。这就强调了需要一个专门针对复杂网络结构和动力学之间相互关系的理论框架,因为它们是同一枚硬币的两面。在这里,我们提出了一个基于网络随时间变化的响应(即格林函数)的严格框架,以研究节点之间随时间的相互作用。为此,我们定义了描述网络连接性和外部输入之间相互作用的流。这种多元度量与图可传递性和映射方程的概念有关。我们使用描述稳定和非保守动力学的多元 Ornstein-Uhlenbeck 过程来说明我们的理论,但该形式可以适应其他已知格林函数的局部动力学。我们将理论应用于经典网络示例,如小世界环和层次网络。我们的理论定义了一个全面的框架,与有向和加权网络具有规范关系,从而为网络分析的标准提供了一个修订途径,从节点之间的两两相互作用到包括社区检测在内的网络全局属性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验