Suppr超能文献

二进制信号输入的非线性神经元模型的分数高斯噪声增强的信息容量。

Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input.

机构信息

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China.

College of Science, Air force Engineering University, Xi'an 710054, China.

出版信息

Phys Rev E. 2018 May;97(5-1):052142. doi: 10.1103/PhysRevE.97.052142.

Abstract

This paper reveals the effect of fractional Gaussian noise with Hurst exponent H∈(1/2,1) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H∈(1/2,1) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.

摘要

本文揭示了具有赫斯特指数 H∈(1/2,1) 的分数高斯噪声对具有二进制信号输入的一般非线性神经元模型的信息容量的影响。分数高斯噪声及其对应的分数布朗运动表现出长程、强相关的增量。它将标准布朗运动扩展到自然界中发现的许多类型的分数过程,如突触噪声。在本文中,对于亚阈值二进制信号,基于“禁止区间”定理给出了保证随机共振发生的充分条件,而对于超阈值二进制信号,模拟结果表明,具有赫斯特指数 H∈(1/2,1) 的加性分数高斯噪声可以增加互信息或比特数。研究表明,具有长程相关性和自相似性特征的突触噪声可能是神经系统有效编码和解码的驱动因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验