Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G3, Canada.
Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
J Chem Phys. 2018 Jun 14;148(22):224503. doi: 10.1063/1.5029464.
The Stokes-Einstein relation (SER) is one of the most robust and widely employed results from the theory of liquids. Yet sizable deviations can be observed for self-solvation, which cannot be explained by the standard hydrodynamic derivation. Here, we revisit the work of Masters and Madden [J. Chem. Phys. 74, 2450-2459 (1981)], who first solved a statistical mechanics model of the SER using the projection operator formalism. By generalizing their analysis to all spatial dimensions and to partially structured solvents, we identify a potential microscopic origin of some of these deviations. We also reproduce the SER-like result from the exact dynamics of infinite-dimensional fluids.
斯托克斯-爱因斯坦关系(SER)是液体理论中最可靠和应用最广泛的结果之一。然而,对于自溶剂化,我们可以观察到相当大的偏差,这不能用标准的流体力学推导来解释。在这里,我们重新审视了马斯特斯和马登(Masters and Madden)的工作[J. Chem. Phys. 74, 2450-2459 (1981)],他们首次使用投影算子形式主义解决了 SER 的统计力学模型。通过将他们的分析推广到所有空间维度和部分结构溶剂,我们确定了这些偏差的一些潜在微观起源。我们还从无限维流体的精确动力学中重现了类似 SER 的结果。