Axe neurosciences, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada.
Axe endocrinologie/néphrologie, Centre de recherche du CHU de Québec, Centre Hospitalier de l'Université Laval (CHUL), 2705 Laurier Blvd., Québec City, Québec G1V 4G2, Canada.
Brain Behav Immun. 2018 Oct;73:450-469. doi: 10.1016/j.bbi.2018.06.007. Epub 2018 Jun 15.
Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter lifespan. Yet, little is known about the impact of WRN mutations on the central nervous system in both humans and mouse models of WS. In the current study, we have performed a longitudinal behavioral assessment on mice bearing a Wrn helicase deletion. Behavioral tests demonstrated a loss of motor activity and coordination, reduction in perception, increase in repetitive behavior, and deficits in both spatial and social novelty memories in Wrn mutant mice compared to age-matched wild type mice. These neurological deficits were associated with biochemical and histological changes in the brain of aged Wrn mutant mice. Microglia, resident immune cells that regulate neuronal plasticity and function in the brain, were hyper-ramified in multiple regions involved with the behavioral deficits of Wrn mutant mice. Furthermore, western analyses indicated that Wrn mutant mice exhibited an increase of oxidative stress markers in the prefrontal cortex. Supporting these findings, electron microscopy studies revealed increased cellular aging and oxidative stress features, among microglia and neurons respectively, in the prefrontal cortex of aged Wrn mutant mice. In addition, multiplex immunoassay of serum identified significant changes in the expression levels of several pro- and anti-inflammatory cytokines. Taken together, these findings indicate that microglial dysfunction and neuronal oxidative stress, associated with peripheral immune system alterations, might be important driving forces leading to abnormal neurological symptoms in WS thus suggesting potential therapeutic targets for interventions.
Werner 综合征(WS)是一种由 RecQ 家族 DNA 解旋酶 WRN 的突变引起的过早衰老疾病。缺乏 WRN 同源物解旋酶结构域部分的小鼠表现出许多 WS 的表型特征,包括代谢异常和寿命缩短。然而,人们对 WRN 突变对人类和 WS 小鼠模型中枢神经系统的影响知之甚少。在本研究中,我们对携带 Wrn 解旋酶缺失的小鼠进行了纵向行为评估。行为测试表明,与年龄匹配的野生型小鼠相比,Wrn 突变小鼠的运动活动和协调能力丧失、感知能力降低、重复行为增加以及空间和社交新颖性记忆缺陷。这些神经缺陷与老年 Wrn 突变小鼠大脑中的生化和组织学变化有关。小胶质细胞是调节大脑中神经元可塑性和功能的常驻免疫细胞,在与 Wrn 突变小鼠行为缺陷相关的多个区域中呈超分支化。此外,western 分析表明,Wrn 突变小鼠在前额叶皮层表现出氧化应激标志物的增加。支持这些发现,电子显微镜研究显示,在老年 Wrn 突变小鼠的前额叶皮层中,小胶质细胞和神经元分别存在细胞衰老和氧化应激特征的增加。此外,血清多重免疫分析确定了几种促炎和抗炎细胞因子表达水平的显著变化。总之,这些发现表明,小胶质细胞功能障碍和神经元氧化应激,以及外周免疫系统的改变,可能是导致 WS 异常神经症状的重要驱动因素,从而为干预提供了潜在的治疗靶点。