Suppr超能文献

双源验证渐进式 FastICA 剥离法在人体第一背侧骨间肌自动表面肌电分解中的应用。

Two-Source Validation of Progressive FastICA Peel-Off for Automatic Surface EMG Decomposition in Human First Dorsal Interosseous Muscle.

机构信息

* Biomedical Engineering Program, University of Science and Technology of China, Hefei, P. R. China.

† Guangdong Work Injury Rehabilitation Center, Guangzhou, P. R. China.

出版信息

Int J Neural Syst. 2018 Nov;28(9):1850019. doi: 10.1142/S0129065718500193. Epub 2018 Apr 24.

Abstract

This study aims to assess the accuracy of a novel high density surface electromyogram (SEMG) decomposition method, namely automatic progressive FastICA peel-off (APFP), for automatic decomposition of experimental electrode array SEMG signals. A two-source method was performed by simultaneous concentric needle EMG and electrode array SEMG recordings from the human first dorsal interosseous (FDI) muscle, using a protocol commonly applied in clinical EMG examination. The electrode array SEMG was automatically decomposed by the APFP while the motor unit action potential (MUAP) trains were also independently identified from the concentric needle EMG. The degree of agreement of the common motor unit (MU) discharge timings decomposed from the two different categories of EMG signals was assessed. A total of 861 and 217 MUs were identified from the 114 trials of simultaneous high density SEMG and concentric needle EMG recordings, respectively. Among them 168 common (MUs) were found with a high average matching rate of [Formula: see text] for the discharge timings. The outcomes of this study show that the APFP can reliably decompose at least a subset of MUs in the high density SEMG signals recorded from the human FDI muscle during low contraction levels using a protocol analog to clinical EMG examination.

摘要

本研究旨在评估一种新颖的高密度表面肌电图(SEMG)分解方法,即自动渐进式 FastICA 去皮(APFP),用于自动分解实验电极阵列 SEMG 信号。通过同时进行同心针 EMG 和来自人体第一背间骨间(FDI)肌肉的电极阵列 SEMG 记录,采用临床 EMG 检查中常用的方案,进行了双源方法。通过 APFP 自动分解电极阵列 SEMG,同时也从同心针 EMG 中独立识别运动单位动作电位(MUAP)。评估从两种不同类型的 EMG 信号分解出的共同运动单位(MU)放电时间的一致性程度。在同时进行高密度 SEMG 和同心针 EMG 记录的 114 次试验中,分别从 861 和 217 个 MU 中识别出 168 个共同(MU),放电时间的平均匹配率高达[Formula: see text]。本研究的结果表明,APFP 可以可靠地分解在低收缩水平下从人类 FDI 肌肉记录的高密度 SEMG 信号中的至少一部分 MU,该协议类似于临床 EMG 检查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验