O'Donnell-Tormey J, DeBoer C J, Nathan C F
J Clin Invest. 1985 Jul;76(1):80-6. doi: 10.1172/JCI111981.
Nine human cell types, six of them malignant, displayed a marked resistance to lysis by hydrogen peroxide (LD50, 2-20 mM). Of the reactive oxygen intermediates generated extracellularly, only H2O2 lysed all the cell types. OH was lytic to one of four, OI- to one of one, and O-2 to none of four cell types tested. Resistance to oxidative lysis did not correlate with specific activity of catalase, glutathione (GSH) peroxidase, other peroxidases, or glutathione disulfide reductase, or with specific content of GSH. Resistance to H2O2 seemed to occur via mechanisms distinct from those responsible for cellular consumption of H2O2. Consumption was inhibitable by azide and was probably due to catalase in each cell type. In contrast, resistance to oxidative lysis occurred via distinct routes in different cells. One cell type used the GSH redox cycle as the primary defense against H2O2, like murine tumors previously studied. Other cells seemed to utilize catalase as the major defense against H2O2. Nonetheless, with both catalase and the GSH redox cycle inhibited, all the human cells tested exhibited an inherent resistance to oxidative lysis, that is, resistance independent of detectable degradation of H2O2.
九种人类细胞类型,其中六种为恶性细胞,对过氧化氢裂解表现出显著抗性(半数致死剂量,2 - 20 mM)。在细胞外产生的活性氧中间体中,只有过氧化氢能裂解所有细胞类型。羟基自由基能裂解所测试四种细胞类型中的一种,超氧碘阴离子能裂解所测试一种细胞类型中的一种,而超氧阴离子不能裂解所测试四种细胞类型中的任何一种。对氧化裂解的抗性与过氧化氢酶、谷胱甘肽(GSH)过氧化物酶、其他过氧化物酶或谷胱甘肽二硫化物还原酶的比活性,或与谷胱甘肽的特定含量均无关联。对过氧化氢的抗性似乎是通过与细胞消耗过氧化氢的机制不同的机制发生的。消耗可被叠氮化物抑制,且可能是由于每种细胞类型中的过氧化氢酶所致。相比之下,对氧化裂解的抗性在不同细胞中通过不同途径发生。一种细胞类型利用谷胱甘肽氧化还原循环作为对抗过氧化氢的主要防御机制,就像先前研究的鼠类肿瘤一样。其他细胞似乎利用过氧化氢酶作为对抗过氧化氢的主要防御机制。尽管如此,当过氧化氢酶和谷胱甘肽氧化还原循环均被抑制时,所有测试的人类细胞都表现出对氧化裂解的固有抗性,即独立于可检测到的过氧化氢降解的抗性