Suppr超能文献

KDM1A 微环境、其致癌潜能及治疗意义。

KDM1A microenvironment, its oncogenic potential, and therapeutic significance.

机构信息

KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.

School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.

出版信息

Epigenetics Chromatin. 2018 Jun 19;11(1):33. doi: 10.1186/s13072-018-0203-3.

Abstract

The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.

摘要

赖氨酸特异性组蛋白去甲基化酶 1A(KDM1A)是第一个挑战甲基化标记不可逆性质概念的去甲基化酶。KDM1A 包含黄素腺嘌呤二核苷酸(FAD)依赖性胺氧化酶结构域,可使组蛋白 3 赖氨酸 4 和组蛋白 3 赖氨酸 9(H3K4me1/2 和 H3K9me1/2)去甲基化。它已成为一种表观遗传发育调节剂,并被证明参与了致癌作用。KDM1A 的功能多样性源于其复杂的结构以及与转录因子、启动子、增强子、癌蛋白和肿瘤相关基因(肿瘤抑制因子和激活因子)的相互作用。在这篇综述中,我们讨论了 KDM1A 在癌症进展中的微环境,使该蛋白能够激活或抑制靶基因的表达,从而使其成为调节细胞生长和分化潜力的重要表观遗传修饰物。对 KDM1A 与相关复合物之间相互作用的机制进行详细分析,将有助于我们更好地理解表观遗传调控,从而可能发现更有效的抗癌药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验