Kuo Calvin, Fanton Michael, Wu Lyndia, Camarillo David
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
J Biomech. 2018 Jul 25;76:220-228. doi: 10.1016/j.jbiomech.2018.05.024. Epub 2018 Jun 15.
The head is kinematically constrained to the torso through the spine and thus, the spine dictates the amount of output head angular motion expected from an input impact. Here, we investigate the spinal kinematic constraint by analyzing the head instantaneous center of rotation (HICOR) with respect to the torso in head/neck sagittal extension and coronal lateral flexion during mild loads applied to 10 subjects. We found the mean HICOR location was near the C5-C6 intervertebral joint in sagittal extension, and T2-T3 intervertebral joint in coronal lateral flexion. Using the impulse-momentum relationship normalized by subject mass and neck length, we developed a non-dimensional analytical ratio between output angular velocity and input linear impulse as a function of HICOR location. The ratio was 0.65 and 0.50 in sagittal extension and coronal lateral flexion respectively, implying 30% greater angular velocities in sagittal extension given an equivalent impulse. Scaling to subject physiology also predicts larger required impulses given greater subject mass and neck length to achieve equivalent angular velocities, which was observed experimentally. Furthermore, the HICOR has greater motion in sagittal extension than coronal lateral flexion, suggesting the head and spine can be represented with a single inverted pendulum in coronal lateral flexion, but requires a more complex representation in sagittal extension. The upper cervical spine has substantial compliance in sagittal extension, and may be responsible for the complex motion and greater extension angular velocities. In analyzing the HICOR, we can gain intuition regarding the neck's role in dictating head motion during external loading.
头部通过脊柱在运动学上与躯干相连,因此,脊柱决定了由输入冲击所预期的输出头部角运动的量。在此,我们通过在对10名受试者施加轻度负荷期间,分析头部/颈部矢状面伸展和冠状面侧屈时相对于躯干的头部瞬时旋转中心(HICOR),来研究脊柱的运动学约束。我们发现,矢状面伸展时HICOR的平均位置靠近C5 - C6椎间关节,冠状面侧屈时靠近T2 - T3椎间关节。利用通过受试者质量和颈部长度归一化的冲量 - 动量关系,我们建立了输出角速度与输入线性冲量之间的无量纲分析比率,作为HICOR位置的函数。矢状面伸展和冠状面侧屈时该比率分别为0.65和0.50,这意味着在同等冲量下,矢状面伸展时的角速度要大30%。根据受试者生理特征进行缩放还预测,要实现同等角速度,受试者质量和颈部长度越大,所需冲量就越大,这一点在实验中得到了观察。此外,HICOR在矢状面伸展中的运动比冠状面侧屈中的运动更大,这表明在冠状面侧屈中,头部和脊柱可以用单个倒立摆来表示,但在矢状面伸展中则需要更复杂的表示。上颈椎在矢状面伸展中有很大的顺应性,可能是造成复杂运动和更大伸展角速度的原因。在分析HICOR时,我们可以直观了解颈部在外部负载期间对头部运动的支配作用。