Shi Yu, Kim Hong Koo
Department of Electrical and Computer Engineering and Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA.
Nano Converg. 2018;5(1):16. doi: 10.1186/s40580-018-0148-z. Epub 2018 Jun 8.
Surface plasmons (SPs) carry electromagnetic energy in the form of collective oscillation of electrons at metal surface and commonly demonstrate two important features: strong lateral confinement and short propagation lengths. In this work we have investigated the trade-off relationship existing between propagation length and lateral confinement of SP fields in a hyperbolic metamaterial system, and explored loosening of lateral confinement as a means of increasing propagation length. By performing finite-difference time-domain analysis of Ag/SiO thin-film stacked structure we demonstrate long range (~ 100 mm) propagation of SPs at 1.3 µm wavelength. In designing low-loss loosely-bound SPs, our approach is to maximally deplete electric fields (both tangential and normal components to the interface) inside metal layers and to support SP fields primarily in the dielectric layers part of metamaterial. Such highly-localized field distributions are attained in a hyperbolic metamaterial structure, whose dielectric tensor is designed to be highly anisotropic, that is, low-loss dielectric (Re() > 0; Im() ~ 0) along the transverse direction (i.e., normal to the interface) and metallic (large negative Re()) along the longitudinal direction, and by closely matching external dielectric to the normal component of metamaterial's dielectric tensor. Suppressing the tangential component of electric field is shown to naturally result in weakly-confined SPs with penetration depths in the range of 3-10 µm. An effective-medium approximation method is used in designing the metamaterial waveguide structure, and we have tested its validity in applying to a minimally structured core-layer case (i.e., composed of one or two metal layers). Low-loss loosely-bound SPs may find alternative applications in far-field evanescent-wave sensing and optics.
表面等离子体激元(SPs)以金属表面电子的集体振荡形式携带电磁能量,通常表现出两个重要特征:强横向限制和短传播长度。在这项工作中,我们研究了双曲线超材料系统中SP场的传播长度和横向限制之间存在的权衡关系,并探索了通过放松横向限制来增加传播长度的方法。通过对Ag/SiO薄膜堆叠结构进行时域有限差分分析,我们展示了在1.3μm波长下SPs的长距离(约100mm)传播。在设计低损耗、弱束缚的SPs时,我们的方法是最大程度地耗尽金属层内部的电场(界面的切向和法向分量),并主要在超材料的介电层部分支持SP场。这种高度局域化的场分布在双曲线超材料结构中得以实现,其介电张量被设计为高度各向异性,即沿横向方向(即垂直于界面)为低损耗电介质(Re(ε)>0;Im(ε)≈0),沿纵向方向为金属性(Re(ε)为大的负值),并且通过使外部电介质与超材料介电张量的法向分量紧密匹配来实现。结果表明,抑制电场的切向分量自然会导致穿透深度在3 - 10μm范围内的弱束缚SPs。在设计超材料波导结构时使用了有效介质近似方法,并且我们已经测试了其在应用于最小结构化核心层情况(即由一或两个金属层组成)时的有效性。低损耗、弱束缚的SPs可能在远场倏逝波传感和光学中有替代应用。