State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Dalton Trans. 2018 Jul 10;47(27):9072-9078. doi: 10.1039/c8dt02254b.
We report the design and realization of yolk-shell structured nanospheres with periodic mesoporous organosilica (PMO) nanospheres or noble metal nanoparticles encapsulated in mesoporous silica shells via a selective etching method. These architectures have well controlled structure, size and morphology. The yolk-shell structured PMO@SiO2 nanoparticles can be precisely functionalized with different catalytic functionalities, even incompatible acidic and basic groups: the PMO core with amino (-NH2) groups and the mesoporous silica shell with sulfonic acid (-SO3H) groups. As a nanoreactor, the as-synthesized Au@SiO2 nanospheres show faster reduction of 4-nitrophenol than that of nitrobenzene. Furthermore, the prepared PMO-NH2@SiO2-SO3H nanoparticles can be used as bifunctional catalysts with highly efficient catalytic performance for catalyzing the deacetalization-Henry cascade reaction.
我们报告了蛋黄壳结构纳米球的设计和实现,这些纳米球通过选择性蚀刻方法封装了周期性介孔有机硅(PMO)纳米球或贵金属纳米颗粒。这些结构具有良好的控制结构、尺寸和形态。蛋黄壳结构的 PMO@SiO2 纳米颗粒可以精确地功能化具有不同的催化功能,甚至是不相容的酸性和碱性基团:PMO 核带有氨基(-NH2)基团,介孔硅壳带有磺酸基(-SO3H)基团。作为纳米反应器,所合成的 Au@SiO2 纳米球在还原 4-硝基苯酚方面比硝基苯更快。此外,制备的 PMO-NH2@SiO2-SO3H 纳米颗粒可用作双功能催化剂,具有高效的催化性能,可催化去乙酰化-亨利串联反应。