Wu Sen, Hsiao Luke, Cheng Xiao, Hancock Braden, Rekatsinas Theodoros, Levis Philip, Ré Christopher
Stanford University.
University of Wisconsin-Madison.
Proc ACM SIGMOD Int Conf Manag Data. 2018 Jun;2018:1301-1316. doi: 10.1145/3183713.3183729.
We focus on knowledge base construction (KBC) from richly formatted data. In contrast to KBC from text or tabular data, KBC from richly formatted data aims to extract relations conveyed jointly via textual, structural, tabular, and visual expressions. We introduce Fonduer, a machine-learning-based KBC system for richly formatted data. Fonduer presents a new data model that accounts for three challenging characteristics of richly formatted data: (1) prevalent document-level relations, (2) multimodality, and (3) data variety. Fonduer uses a new deep-learning model to automatically capture the representation (i.e., features) needed to learn how to extract relations from richly formatted data. Finally, Fonduer provides a new programming model that enables users to convert domain expertise, based on multiple modalities of information, to meaningful signals of supervision for training a KBC system. Fonduer-based KBC systems are in production for a range of use cases, including at a major online retailer. We compare Fonduer against state-of-the-art KBC approaches in four different domains. We show that Fonduer achieves an average improvement of 41 F1 points on the quality of the output knowledge base-and in some cases produces up to 1.87× the number of correct entries-compared to expert-curated public knowledge bases. We also conduct a user study to assess the usability of Fonduer's new programming model. We show that after using Fonduer for only 30 minutes, non-domain experts are able to design KBC systems that achieve on average 23 F1 points higher quality than traditional machine-learning-based KBC approaches.
我们专注于从格式丰富的数据中进行知识库构建(KBC)。与从文本或表格数据进行的KBC不同,从格式丰富的数据进行KBC旨在提取通过文本、结构、表格和视觉表达共同传达的关系。我们引入了Fonduer,这是一个基于机器学习的用于格式丰富数据的KBC系统。Fonduer提出了一种新的数据模型,该模型考虑了格式丰富数据的三个具有挑战性的特征:(1)普遍存在的文档级关系,(2)多模态,以及(3)数据多样性。Fonduer使用一种新的深度学习模型来自动捕获学习如何从格式丰富的数据中提取关系所需的表示(即特征)。最后,Fonduer提供了一种新的编程模型,该模型使用户能够基于多种信息模态将领域专业知识转换为用于训练KBC系统的有意义的监督信号。基于Fonduer的KBC系统已在一系列用例中投入生产,包括在一家大型在线零售商中。我们在四个不同领域将Fonduer与最先进的KBC方法进行了比较。我们表明,与专家策划的公共知识库相比,Fonduer在输出知识库的质量上平均提高了41个F1分数,并且在某些情况下产生的正确条目数量高达1.87倍。我们还进行了一项用户研究,以评估Fonduer新编程模型的可用性。我们表明,仅使用Fonduer 30分钟后,非领域专家就能设计出KBC系统,其质量平均比传统的基于机器学习的KBC方法高出23个F1分数。