Suppr超能文献

真/模拟微重力与红光光激活对植物根尖分生细胞的联合影响。

The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells.

机构信息

Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain.

Institut Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE.57 rue Cuvier CP39, 75005, Paris, France.

出版信息

Planta. 2018 Sep;248(3):691-704. doi: 10.1007/s00425-018-2930-x. Epub 2018 Jun 8.

Abstract

Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.

摘要

红光能够补偿微重力对根细胞生长和增殖的有害影响。部分重力与红光结合在植物早期发育过程中产生差异信号。光和重力是植物在整个进化过程中用来指导其发育的环境线索。我们已经研究了在空间改变的重力下光性和向重力性之间的串扰。重点是在黑暗中微重力下破坏的细胞生长和增殖之间的分生组织平衡的影响。在我们的空间飞行实验中,三种拟南芥基因型(野生型和光敏色素 A 和 B 的突变体)的幼苗生长了 6 天,其中最后 2 天进行了红光光激活。除了微重力和船上的 1g 对照条件外,还使用船上的离心机产生了部分重力(名义上为 0.1g、0.3g 和 0.5g)。此外,还在地面上进行了模拟微重力(随机定位机,RPM)实验,包括暗生长和光刺激的样品。在空间飞行和 RPM 实验中,光激活的样品的根长增加,与红光的光性反应一致,但随着重力的增加,这种反应逐渐减少。通过转录组学和显微镜方法在黑暗中检测到微重力下细胞生长和增殖的解偶联,但红光光激活产生了显著的逆转。相比之下,红光和部分重力的组合在细胞生长和增殖的分子标记物中产生了微小但一致的变化,这表明在早期植物发育中光和重力信号之间存在拮抗作用。在微重力下理解这些植物生长和发育参数对于月球和火星的生物再生生命支持系统的殖民化将非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验