Du Hongfang, Ai Wei, Zhao Zhi Liang, Chen Yu, Xu Xin, Zou Chenji, Wu Lishu, Su Lan, Nan Kaikai, Yu Ting, Li Chang Ming
Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China.
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Small. 2018 Jul 2:e1801068. doi: 10.1002/smll.201801068.
Herein, a surfactant- and additive-free strategy is developed for morphology-controllable synthesis of cobalt pyrophosphate (CoPPi) nanostructures by tuning the concentration and ratio of the precursor solutions of Na P O and Co(CH COO) . A series of CoPPi nanostructures including nanowires, nanobelts, nanoleaves, and nanorhombuses are prepared and exhibit very promising electrocatalytic properties toward the oxygen evolution reaction (OER). Acting as both reactant and pseudo-surfactant, the existence of excess Na P O is essential to synthesize CoPPi nanostructures for unique morphologies. Among all CoPPi nanostructures, the CoPPi nanowires catalyst renders the best catalytic performance for OER in alkaline media, achieving a low Tafel slope of 54.1 mV dec , a small overpotential of 359 mV at 10 mA cm , and superior stability. The electrocatalytic activities of CoPPi nanowires outperform the most reported non-noble metal based catalysts, even better than the benchmark Ir/C (20%) catalyst. The reported synthesis of CoPPi gives guidance for morphology control of transition metal pyrophosphate based nanostructures for a high-performance inexpensive material to replace the noble metal-based OER catalysts.
在此,通过调节Na₄P₂O₇和Co(CH₃COO)₂前驱体溶液的浓度和比例,开发了一种无表面活性剂和添加剂的策略,用于形态可控地合成焦磷酸钴(CoPPi)纳米结构。制备了一系列CoPPi纳米结构,包括纳米线、纳米带、纳米叶和纳米菱形,它们对析氧反应(OER)表现出非常有前景的电催化性能。过量的Na₄P₂O₇作为反应物和假表面活性剂,对于合成具有独特形态的CoPPi纳米结构至关重要。在所有CoPPi纳米结构中,CoPPi纳米线催化剂在碱性介质中对OER具有最佳的催化性能,实现了54.1 mV dec⁻¹的低塔菲尔斜率,在10 mA cm⁻²时359 mV的小过电位以及优异的稳定性。CoPPi纳米线的电催化活性优于大多数已报道的非贵金属基催化剂,甚至优于基准Ir/C(20%)催化剂。所报道的CoPPi合成方法为过渡金属焦磷酸盐基纳米结构的形态控制提供了指导,以获得一种高性能的廉价材料来替代贵金属基OER催化剂。