School of Metallurgy and Environment , Central South University , Changsha 410083 , P. R. China.
Department of Applied Physics , Hong Kong Polytechnic University , Kowloon , Hong Kong 999077 , P. R. China.
ACS Appl Mater Interfaces. 2018 Jul 25;10(29):24564-24572. doi: 10.1021/acsami.8b07577. Epub 2018 Jul 13.
The application of sodium-ion batteries (SIBs) requires a suitable cathode material with low cost, nontoxic, high safety, and high energy density, which is still a big challenge; thus, a basic research on exploring new types of materials is imperative. In this work, a manganic pyrophosphate and carbon compound NaMn(PO)/C has been synthesized through a feasible sol-gel method. Rietveld refinement reveals that NaMn(PO) adopts a triclinic structure ( P1̅ space group), which possesses spacious ion diffusion channels for facile sodium migration. The off-stoichiometric phase is able to offer more reversible Na, delivering an enhanced reversible capacity of 114 mA h g at 0.1 C, and because of the strong "inductive effect" that (PO) groups imposing on the Mn/Mn redox couple, NaMn(PO)/C presents high platforms above 3.6 V, contributing a remarkable energy density of 376 W h kg, which is among the highest Fe-/Mn-based polyanion-type cathode materials. Furthermore, the off-stoichiometric compound also presents satisfactory rate capability and long-cycle stability, with a capacity retention of 75% after 500 cycles at 5 C. Ex situ X-ray diffraction demonstrates a single-phase reaction mechanism, and the density functional theory calculations display two one-dimensional sodium migration paths with low energy barriers in NaMn(PO), which is vital for the facile sodium storage. We believe that this compound will be a competitive cathode material for large-scale SIBs.
钠离子电池(SIBs)的应用需要一种具有低成本、无毒、高安全性和高能量密度的合适阴极材料,这仍然是一个巨大的挑战;因此,探索新型材料的基础研究势在必行。在这项工作中,通过一种可行的溶胶-凝胶法合成了一种焦磷酸锰和碳化合物 NaMn(PO)/C。Rietveld 精修表明 NaMn(PO) 采用三方晶系(P1̅空间群),具有宽敞的离子扩散通道,便于钠离子迁移。非化学计量相能够提供更多的可逆 Na,在 0.1 C 时提供增强的可逆容量 114 mA h g,并且由于 (PO) 基团对 Mn/Mn 氧化还原对施加的强“诱导效应”,NaMn(PO)/C 在 3.6 V 以上呈现出高平台,贡献了显著的 376 Wh kg 的能量密度,这在基于 Fe-/Mn 的聚阴离子型阴极材料中是最高的之一。此外,非化学计量化合物还表现出令人满意的倍率性能和长循环稳定性,在 5 C 时经过 500 次循环后容量保持率为 75%。原位 X 射线衍射表明反应机制为单相反应,密度泛函理论计算显示 NaMn(PO) 中存在两条一维钠离子迁移路径,能量势垒较低,这对于实现钠离子的高效存储至关重要。我们相信,这种化合物将成为大规模 SIBs 的一种有竞争力的阴极材料。