Suppr超能文献

用于宽光谱吸收的流体可切换超表面

Fluidically Switchable Metasurface for Wide Spectrum Absorption.

作者信息

Ghosh Saptarshi, Lim Sungjoon

机构信息

School of Electrical and Electronics Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, 156-756, Republic of Korea.

出版信息

Sci Rep. 2018 Jul 5;8(1):10169. doi: 10.1038/s41598-018-28574-9.

Abstract

Metasurfaces, owing to their attractive features, provide a wide range of potential applications. Electromagnetic absorbers based on metasurfaces have significantly improved responses compared to the earlier absorbers made from composite materials. Active metasurfaces, in contrast to the passive designs, can exhibit multifunctional characteristics without repeated fabrication. This paper presents a fluidically-reconfigurable active metasurface that provides switchable wide spectrum absorption. The proposed design is comprised of liquid-metal-encased dielectric substrates, sandwiched between the top resistive pattern and bottom ground plane. With precise control of the liquid metal flow, the structure can exhibit wide absorption bandwidth switching between two frequency regimes. Further, the proposed metasurface has a significant advantage of displaying polarization-insensitive behaviour, unlike the previous fluidically-reconfigured structures. The design has been investigated by illustrating surface current distributions and several parametric variations. Finally, the proposed structure was fabricated using laser etching, and experimentally validated. This work has paved the way towards the realization of reconfigurable metasurfaces with multifunctional characteristics, thus showing great potential in microfluidic technology for diverse applications.

摘要

超表面因其具有吸引力的特性而具有广泛的潜在应用。与早期由复合材料制成的吸收器相比,基于超表面的电磁吸收器的响应有了显著改善。与无源设计相比,有源超表面无需重复制造即可展现多功能特性。本文提出了一种流体可重构有源超表面,它能提供可切换的宽频谱吸收。所提出的设计由封装在液态金属中的电介质基板组成,夹在顶部电阻图案和底部接地平面之间。通过精确控制液态金属的流动,该结构能够在两个频率范围之间展现宽吸收带宽切换。此外,与之前的流体可重构结构不同,所提出的超表面具有显著优势,即表现出对偏振不敏感的特性。通过展示表面电流分布和几种参数变化对该设计进行了研究。最后,使用激光蚀刻制造了所提出的结构,并进行了实验验证。这项工作为实现具有多功能特性的可重构超表面铺平了道路,从而在微流体技术的各种应用中显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a412/6033917/98e83a895f0a/41598_2018_28574_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验