Charotar University of Science and Technology , Changa, Anand 388 421 , Gujarat , India.
ACS Appl Mater Interfaces. 2018 Jul 25;10(29):24480-24490. doi: 10.1021/acsami.8b04239. Epub 2018 Jul 16.
In this article, we report the synthesis of nitrogen-rich carbon layer-encapsulated Ni(0) nanoparticles as a core-shell structure (Ni@N/C-g-800) for the catalytic hydrogenation of furfural to furfuryl alcohol. The nickel nanoparticles were stabilized by the nitrogen-rich graphitic framework, which formed during the agitation of nickel acetate-impregnated cucurbit[6]uril surface in a reducing atmosphere. Furthermore, the catalyst was characterized using various physicochemical methods such as powder X-ray diffraction, Raman, field emission-scanning electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area, CO-temperature-programmed desorption, inductive coupled plasma, and CHN analyses. The nitrogen-rich environment of the solid support with metallic Ni nanoparticles was found to be active and selective for the catalytic hydrogenation of furfural with molecular H in an aqueous medium at 100 °C. To understand the reaction mechanism, the diffuse reflectance infrared Fourier transform study was performed, which revealed that the C═O bond is activated in the presence of a catalyst. In addition, we have extended our methodology toward the synthesis of "levulinic acid" and "γ-valerolactone", by successive hydrolysis and hydrogenation of furfuryl alcohol and levulinic acid, respectively, in an aqueous medium. Moreover, the heterogeneous catalysts used in all of the three consecutive steps help in recovery and recycling of the catalyst and easy separation of products.
本文报道了氮掺杂碳层包覆 Ni(0)纳米粒子作为核壳结构(Ni@N/C-g-800)的合成,用于催化糠醛加氢制备糠醇。镍纳米粒子被氮掺杂的石墨框架稳定,该框架是在还原气氛中搅拌醋酸镍浸渍的葫芦[6]脲表面时形成的。此外,采用粉末 X 射线衍射、拉曼、场发射扫描电子显微镜、高分辨率透射电子显微镜、X 射线光电子能谱、Brunauer-Emmett-Teller 比表面积、CO 程序升温脱附、电感耦合等离子体和 CHN 分析等多种物理化学方法对催化剂进行了表征。研究发现,在 100°C 的水相中,以分子 H 为氢源,含金属 Ni 纳米粒子的富氮环境的固体载体对糠醛的催化加氢具有活性和选择性。为了理解反应机理,进行了漫反射红外傅里叶变换研究,结果表明在催化剂存在下 C═O 键被活化。此外,我们还将我们的方法扩展到了在水相中通过糠醇和乙酰丙酸的连续水解和加氢分别合成“乙酰丙酸”和“γ-戊内酯”。此外,在所有三个连续步骤中使用的多相催化剂有助于催化剂的回收和再循环以及产物的易于分离。