Suppr超能文献

生长在氮掺杂还原氧化石墨烯上的花状 BiS 纳米结构用于电化学测定过氧化氢。

Flower-like BiS nanostructures grown on nitrogen-doped reduced graphene oxide for electrochemical determination of hydrogen peroxide.

机构信息

School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.

School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, India.

出版信息

J Colloid Interface Sci. 2018 Nov 15;530:361-371. doi: 10.1016/j.jcis.2018.06.069. Epub 2018 Jun 25.

Abstract

This paper reports a facile solvothermal method for the synthesis of BiS flower-like nanostructures grown in situ on a nitrogen-doped reduced graphene oxide (BiS@N-G) surface. Thiourea was used as the nitrogen source and reducing agent for graphene oxide. The surface morphology of the as-prepared BiS@N-G composites was analyzed by field emission scanning electron microscopy and transmission electron microscopy. The crystalline structure and surface chemical states were examined by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The as-prepared BiS@N-G composite was deposited on a glassy carbon (GC) electrode, and the modified electrode was employed for the electrocatalytic detection of HO. The calculated diffusion coefficient and catalytic rate constant of the BiS@N-G modified electrode were 4.9 × 10 cm s and 5671 M s, respectively. The BiS@N-G/GC electrode demonstrated a wide concentration range for HO, from 10 to 42,960 μM, with a sensitivity of 0.1535 μA μM and an obtained limit of detection of 1.9 μM.

摘要

本文报道了一种简便的溶剂热法,用于合成原位生长在氮掺杂还原氧化石墨烯(BiS@N-G)表面的 BiS 花状纳米结构。硫脲被用作氮源和氧化石墨烯的还原剂。通过场发射扫描电子显微镜和透射电子显微镜对所制备的 BiS@N-G 复合材料的表面形貌进行了分析。通过 X 射线衍射和 X 射线光电子能谱分别对晶体结构和表面化学状态进行了检测。将制备的 BiS@N-G 复合材料沉积在玻碳(GC)电极上,并将修饰电极用于 HO 的电化学催化检测。计算得到 BiS@N-G 修饰电极的扩散系数和催化速率常数分别为 4.9×10cm²s 和 5671M s。BiS@N-G/GC 电极对 HO 表现出宽的浓度范围,从 10 到 42960μM,灵敏度为 0.1535μAμM,检测限为 1.9μM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验