Suppr超能文献

在高真空和中真空条件下用气相丙炔酸对氧化锌表面进行改性的比较。

Comparison of ZnO surface modification with gas-phase propiolic acid at high and medium vacuum conditions.

作者信息

Konh Mahsa, He Chuan, Li Zhengxin, Bai Shi, Galoppini Elena, Gundlach Lars, Teplyakov Andrew V

机构信息

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716.

Department of Chemistry, Rutgers University, Newark, New Jersey 07102.

出版信息

J Vac Sci Technol A. 2018 Jul;36(4):041404. doi: 10.1116/1.5031945. Epub 2018 Jun 29.

Abstract

Recent advances in preservation of the morphology of ZnO nanostructures during dye sensitization required the use of a two-step preparation procedure. The first step was the key for preserving ZnO materials morphology. It required exposing clean ZnO nanostructures to a gas-phase prop-2-ynoic acid (propiolic acid) in vacuum. This step resulted in the formation of a robust and stable surface-bound carboxylate with ethynyl groups available for further modification, for example, with click chemistry. This paper utilizes spectroscopic and microscopic investigations to answer several questions about this modification and to determine if the process can be performed under medium vacuum conditions instead of high vacuum procedures reported earlier. Comparing the results of the preparation process at medium vacuum of 0.5 Torr base pressure with the previously reported investigations of the same process in high vacuum of 10Torr suggests that both processes lead to the formation of the same surface species, confirming that the proposed modification scheme can be widely applicable for ZnO sensitization procedures and does not require the use of high vacuum. Additional analysis comparing the computationally predicted surface structures with the results of spectroscopic investigations yields the more complete description of the surface species resulting from this approach.

摘要

在染料敏化过程中保存氧化锌纳米结构形态方面的最新进展需要采用两步制备程序。第一步是保存氧化锌材料形态的关键。这需要在真空中将清洁的氧化锌纳米结构暴露于气相丙炔酸中。这一步导致形成了一种坚固且稳定的表面结合羧酸盐,其乙炔基可用于进一步修饰,例如通过点击化学。本文利用光谱和显微镜研究来回答关于这种修饰的几个问题,并确定该过程是否可以在中等真空条件下进行,而不是像之前报道的那样在高真空程序下进行。将基础压力为0.5托的中等真空下的制备过程结果与之前报道的在10托高真空下的相同过程研究结果进行比较表明,这两个过程都会导致形成相同的表面物种,证实了所提出的修饰方案可广泛应用于氧化锌敏化程序,并且不需要使用高真空。将计算预测的表面结构与光谱研究结果进行比较的额外分析,对这种方法产生的表面物种进行了更完整的描述。

相似文献

1
Comparison of ZnO surface modification with gas-phase propiolic acid at high and medium vacuum conditions.
J Vac Sci Technol A. 2018 Jul;36(4):041404. doi: 10.1116/1.5031945. Epub 2018 Jun 29.
2
Chemical Protection of Material Morphology: Robust and Gentle Gas-Phase Surface Functionalization of ZnO with Propiolic Acid.
Chem Mater. 2017 May 9;29(9):4063-4071. doi: 10.1021/acs.chemmater.7b00747. Epub 2017 Apr 21.
3
Morphology-Preserving Sensitization of ZnO Nanorod Surfaces via Click-Chemistry.
J Phys Chem Lett. 2018 Feb 15;9(4):768-772. doi: 10.1021/acs.jpclett.7b03388. Epub 2018 Feb 2.
4
Self-Catalyzed Sensitization of CuO Nanowires via a Solvent-free Click Reaction.
Langmuir. 2020 Dec 8;36(48):14539-14545. doi: 10.1021/acs.langmuir.0c02262. Epub 2020 Nov 25.
5
A chemometric approach for the sensitization procedure of ZnO flowerlike microstructures for dye-sensitized solar cells.
ACS Appl Mater Interfaces. 2013 Nov 13;5(21):11288-95. doi: 10.1021/am403527m. Epub 2013 Oct 25.
7
A practical vacuum sensor based on a ZnO nanowire array.
Nanotechnology. 2010 Nov 26;21(47):475502. doi: 10.1088/0957-4484/21/47/475502. Epub 2010 Oct 29.
8
A ZnO nanowire vacuum pressure sensor.
Nanotechnology. 2008 Mar 5;19(9):095505. doi: 10.1088/0957-4484/19/9/095505. Epub 2008 Feb 11.
9
Introducing the concept of pulsed vapor phase copper-free surface click-chemistry using the ALD technique.
Chem Commun (Camb). 2019 Mar 7;55(21):3109-3112. doi: 10.1039/c9cc00367c.
10
Catalytic induced morpholical transformation of porous ZnO to ZnO nanorods by Sn(IV) and their effect on photocatalytic reduction of methylene blue and DFT calculations.
Spectrochim Acta A Mol Biomol Spectrosc. 2019 Sep 5;220:117101. doi: 10.1016/j.saa.2019.05.006. Epub 2019 May 11.

本文引用的文献

1
Morphology-Preserving Sensitization of ZnO Nanorod Surfaces via Click-Chemistry.
J Phys Chem Lett. 2018 Feb 15;9(4):768-772. doi: 10.1021/acs.jpclett.7b03388. Epub 2018 Feb 2.
2
Chemical Protection of Material Morphology: Robust and Gentle Gas-Phase Surface Functionalization of ZnO with Propiolic Acid.
Chem Mater. 2017 May 9;29(9):4063-4071. doi: 10.1021/acs.chemmater.7b00747. Epub 2017 Apr 21.
3
Universal Calibration of Computationally Predicted N 1s Binding Energies for Interpretation of XPS Experimental Measurements.
Langmuir. 2017 Oct 17;33(41):10792-10799. doi: 10.1021/acs.langmuir.7b02301. Epub 2017 Oct 5.
5
Investigation of the HS poisoning process for sensing composite material based on carbon nanotubes and metal oxides.
Sens Actuators B Chem. 2016 Nov 1;235:213-221. doi: 10.1016/j.snb.2016.05.014. Epub 2016 May 6.
6
Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells.
J Am Chem Soc. 2016 Oct 12;138(40):13085-13102. doi: 10.1021/jacs.6b06466. Epub 2016 Oct 3.
7
Role of the Deposition Precursor Molecules in Defining Oxidation State of Deposited Copper in Surface Reduction Reactions on H-Terminated Si(111) Surface.
J Phys Chem C Nanomater Interfaces. 2015 Dec 3;119(48):27018-27027. doi: 10.1021/acs.jpcc.5b08287. Epub 2015 Nov 4.
8
Transmetalation Process as a Route for Preparation of Zinc-Oxide-Supported Copper Nanoparticles.
Langmuir. 2016 Jul 19;32(28):7029-37. doi: 10.1021/acs.langmuir.6b00061. Epub 2016 Jul 8.
10
In situ investigation of organic ligand displacement processes on ZnO powder surface.
J Phys Condens Matter. 2015 Feb 11;27(5):054007. doi: 10.1088/0953-8984/27/5/054007. Epub 2014 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验