Suppr超能文献

具有时变耦合和一般拓扑结构的随机耦合系统的稳定性

The Stability of Stochastic Coupled Systems With Time-Varying Coupling and General Topology Structure.

作者信息

Liu Yan, Li Wenxue, Feng Jiqiang

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4189-4200. doi: 10.1109/TNNLS.2017.2757767. Epub 2017 Oct 26.

Abstract

We introduce a class of novel stochastic coupled systems in which the coupling structure is time-varying and the topology structure is not strongly connected, and first establish the system on a digraph with a time-varying weight matrix. Motivated by Du and Li (2014), we give a hierarchical method to deal with digraphs without strong connectivity and establish the corresponding hierarchical algorithm to realize this approach. Also, an example is given to illustrate our hierarchical algorithm and its feasibility. In the sequel, based on the theory of asymptotically autonomous systems, Kirchhoff's matrix tree theorem, and Lyapunov method, several moment exponential stability criteria are presented, including a Lyapunov-type theorem and a coefficient-type criterion. Furthermore, theoretical results are applied to stochastic coupled oscillators with time-varying coupling structure (SCTCS), and the stability criterion of SCTCS is obtained. Finally, the effectiveness of theoretical results is illustrated by two numerical examples.

摘要

我们引入了一类新型随机耦合系统,其中耦合结构是时变的且拓扑结构不是强连通的,并首先在具有时变权重矩阵的有向图上建立该系统。受Du和Li(2014)的启发,我们给出一种分层方法来处理非强连通的有向图,并建立相应的分层算法来实现这种方法。此外,给出一个例子来说明我们的分层算法及其可行性。接下来,基于渐近自治系统理论、基尔霍夫矩阵树定理和李雅普诺夫方法,给出了几个矩指数稳定性准则,包括一个李雅普诺夫型定理和一个系数型准则。此外,将理论结果应用于具有时变耦合结构的随机耦合振子(SCTCS),并得到了SCTCS的稳定性准则。最后,通过两个数值例子说明了理论结果的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验