Suppr超能文献

基于目标建议的视频显著目标检测

Video Saliency Detection Using Object Proposals.

出版信息

IEEE Trans Cybern. 2018 Nov;48(11):3159-3170. doi: 10.1109/TCYB.2017.2761361. Epub 2017 Oct 25.

Abstract

In this paper, we introduce a novel approach to identify salient object regions in videos via object proposals. The core idea is to solve the saliency detection problem by ranking and selecting the salient proposals based on object-level saliency cues. Object proposals offer a more complete and high-level representation, which naturally caters to the needs of salient object detection. As well as introducing this novel solution for video salient object detection, we reorganize various discriminative saliency cues and traditional saliency assumptions on object proposals. With object candidates, a proposal ranking and voting scheme, based on various object-level saliency cues, is designed to screen out nonsalient parts, select salient object regions, and to infer an initial saliency estimate. Then a saliency optimization process that considers temporal consistency and appearance differences between salient and nonsalient regions is used to refine the initial saliency estimates. Our experiments on public datasets (SegTrackV2, Freiburg-Berkeley Motion Segmentation Dataset, and Densely Annotated Video Segmentation) validate the effectiveness, and the proposed method produces significant improvements over state-of-the-art algorithms.

摘要

在本文中,我们介绍了一种通过目标提议来识别视频中显著对象区域的新方法。其核心思想是通过基于对象级显著线索对显著提议进行排序和选择来解决显著检测问题。目标提议提供了更完整和更高级的表示,这自然符合显著对象检测的需求。除了介绍用于视频显著对象检测的这种新解决方案外,我们还重新组织了各种有区别的显著线索和传统的关于对象提议的假设。有了对象候选者,我们设计了一种基于各种对象级显著线索的提议排序和投票方案,以筛选出非显著部分,选择显著对象区域,并推断出初始显著估计。然后,我们使用一个考虑显著和非显著区域之间的时间一致性和外观差异的显著优化过程来细化初始显著估计。我们在公共数据集(SegTrackV2、Freiburg-Berkeley 运动分割数据集和密集标注视频分割)上的实验验证了其有效性,并且该方法相对于最先进的算法产生了显著的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验