Suppr超能文献

基于进化多目标优化的多目标患者分层。

Multiobjective Patient Stratification Using Evolutionary Multiobjective Optimization.

出版信息

IEEE J Biomed Health Inform. 2018 Sep;22(5):1619-1629. doi: 10.1109/JBHI.2017.2769711. Epub 2017 Nov 3.

Abstract

One of the main challenges in modern medic-ine is to stratify patients for personalized care. Many different clustering methods have been proposed to solve the problem in both quantitative and biologically meaningful manners. However, existing clustering algorithms suffer from numerous restrictions such as experimental noises, high dimensionality, and poor interpretability. To overcome those limitations altogether, we propose and formulate a multiobjective framework based on evolutionary multiobjective optimization to balance the feature relevance and redundancy for patient stratification. To demonstrate the effectiveness of our proposed algorithms, we benchmark our algorithms across 55 synthetic datasets based on a real human transcription regulation network model, 35 real cancer gene expression datasets, and two case studies. Experimental results suggest that the proposed algorithms perform better than the recent state-of-the-arts. In addition, time complexity analysis, convergence analysis, and parameter analysis are conducted to demonstrate the robustness of the proposed methods from different perspectives. Finally, the t-Distributed Stochastic Neighbor Embedding (t-SNE) is applied to project the selected feature subsets onto two or three dimensions to visualize the high-dimensional patient stratification data.

摘要

现代医学面临的主要挑战之一是对患者进行分层,以提供个性化的治疗。为了解决这个问题,已经提出了许多不同的聚类方法,从定量和有生物学意义的角度来解决问题。然而,现有的聚类算法存在许多限制,例如实验噪声、高维性和较差的可解释性。为了克服这些限制,我们提出并制定了一个基于进化多目标优化的多目标框架,以平衡特征相关性和冗余性,从而对患者进行分层。为了证明我们提出的算法的有效性,我们在基于真实人类转录调控网络模型的 55 个合成数据集、35 个真实癌症基因表达数据集以及两个案例研究上对我们的算法进行了基准测试。实验结果表明,所提出的算法比最新的技术更为有效。此外,还进行了时间复杂度分析、收敛性分析和参数分析,从不同角度证明了所提出方法的稳健性。最后,应用 t 分布随机邻居嵌入(t-SNE)将选定的特征子集投射到二维或三维空间,以可视化高维患者分层数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验