IEEE Trans Biomed Eng. 2019 Feb;66(2):584-594. doi: 10.1109/TBME.2018.2850911. Epub 2018 Jul 5.
Magnetic resonance spectroscopic imaging (MRSI) signals are often corrupted by residual water and artifacts. Residual water suppression plays an important role in accurate and efficient quantification of metabolites from MRSI. A tensor-based method for suppressing residual water is proposed.
A third-order tensor is constructed by stacking the Löwner matrices corresponding to each MRSI voxel spectrum along the third mode. A canonical polyadic decomposition is applied on the tensor to extract the water component and to, subsequently, remove it from the original MRSI signals.
The proposed method applied on both simulated and in-vivo MRSI signals showed good water suppression performance.
The tensor-based Löwner method has better performance in suppressing residual water in MRSI signals as compared to the widely used subspace-based Hankel singular value decomposition method.
A tensor method suppresses residual water simultaneously from all the voxels in the MRSI grid and helps in preventing the failure of the water suppression in single voxels.
磁共振波谱成像(MRSI)信号常常受到残余水和伪影的干扰。残余水抑制在 MRSI 代谢物的准确和高效定量中起着重要作用。本文提出了一种基于张量的残余水抑制方法。
通过沿第三模态堆叠对应于每个 MRSI 体素谱的 Löwner 矩阵,构建三阶张量。对张量进行典型多线性分解,以提取水分量,并随后从原始 MRSI 信号中去除它。
该方法应用于模拟和体内 MRSI 信号均表现出良好的水抑制性能。
与广泛使用的基于子空间的 Hankel 奇异值分解方法相比,基于张量的 Löwner 方法在抑制 MRSI 信号中的残余水方面具有更好的性能。
张量方法可以同时从 MRSI 网格中的所有体素中抑制残余水,有助于防止单个体素中的水抑制失败。