Suppr超能文献

使用具有噪声网络吸引子的分布式网络进行敏感有限状态计算。

Sensitive Finite-State Computations Using a Distributed Network With a Noisy Network Attractor.

作者信息

Ashwin Peter, Postlethwaite Claire

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):5847-5858. doi: 10.1109/TNNLS.2018.2813404. Epub 2018 Apr 4.

Abstract

We exhibit a class of smooth continuous-state neural-inspired networks composed of simple nonlinear elements that can be made to function as a finite-state computational machine. We give an explicit construction of arbitrary finite-state virtual machines in the spatiotemporal dynamics of the network. The dynamics of the functional network can be completely characterized as a "noisy network attractor" in phase space operating in either an "excitable" or a "free-running" regime, respectively, corresponding to excitable or heteroclinic connections between states. The regime depends on the sign of an "excitability parameter." Viewing the network as a nonlinear stochastic differential equation where a deterministic (signal) and/or a stochastic (noise) input is applied to any element, we explore the influence of the signal-to-noise ratio on the error rate of the computations. The free-running regime is extremely sensitive to inputs: arbitrarily small amplitude perturbations can be used to perform computations with the system as long as the input dominates the noise. We find a counter-intuitive regime where increasing noise amplitude can lead to more, rather than less, accurate computation. We suggest that noisy network attractors will be useful for understanding neural networks that reliably and sensitively perform finite-state computations in a noisy environment.

摘要

我们展示了一类由简单非线性元件组成的平滑连续状态神经启发式网络,这些网络可被制造成能起到有限状态计算机的作用。我们在网络的时空动力学中给出了任意有限状态虚拟机的显式构造。功能网络的动力学可以完全表征为相空间中的“噪声网络吸引子”,分别在“可兴奋”或“自由运行”状态下运行,这对应于状态之间的可兴奋或异宿连接。该状态取决于“兴奋性参数”的符号。将网络视为一个非线性随机微分方程,其中确定性(信号)和/或随机(噪声)输入应用于任何元件,我们探讨了信噪比(SNR)对计算错误率的影响。自由运行状态对输入极其敏感:只要输入主导噪声,任意小幅度的扰动都可用于对系统进行计算。我们发现了一个违反直觉的状态,即增加噪声幅度可导致计算更准确而非更不准确。我们认为,噪声网络吸引子将有助于理解在噪声环境中可靠且灵敏地执行有限状态计算的神经网络。

相似文献

1
Sensitive Finite-State Computations Using a Distributed Network With a Noisy Network Attractor.
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):5847-5858. doi: 10.1109/TNNLS.2018.2813404. Epub 2018 Apr 4.
2
Excitable networks for finite state computation with continuous time recurrent neural networks.
Biol Cybern. 2021 Oct;115(5):519-538. doi: 10.1007/s00422-021-00895-5. Epub 2021 Oct 5.
4
Dynamics and computation of continuous attractors.
Neural Comput. 2008 Apr;20(4):994-1025. doi: 10.1162/neco.2008.10-06-378.
5
Network attractors and nonlinear dynamics of neural computation.
Curr Opin Neurobiol. 2024 Feb;84:102818. doi: 10.1016/j.conb.2023.102818. Epub 2023 Dec 8.
6
Vector Symbolic Finite State Machines in Attractor Neural Networks.
Neural Comput. 2024 Mar 21;36(4):549-595. doi: 10.1162/neco_a_01638.
8
Noise-constrained switching times for heteroclinic computing.
Chaos. 2017 Mar;27(3):033107. doi: 10.1063/1.4977552.
10
Fluctuations-induced coexistence in public goods dynamics.
Phys Biol. 2016 Oct 18;13(5):056006. doi: 10.1088/1478-3975/13/5/056006.

引用本文的文献

1
Heteroclinic networks for brain dynamics.
Front Netw Physiol. 2023 Nov 8;3:1276401. doi: 10.3389/fnetp.2023.1276401. eCollection 2023.
2
Excitable networks for finite state computation with continuous time recurrent neural networks.
Biol Cybern. 2021 Oct;115(5):519-538. doi: 10.1007/s00422-021-00895-5. Epub 2021 Oct 5.
3
Noisy network attractor models for transitions between EEG microstates.
J Math Neurosci. 2021 Jan 4;11(1):1. doi: 10.1186/s13408-020-00100-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验