Suppr超能文献

结合上下文信息和知识表示进行化学-疾病关系抽取。

Combining Context and Knowledge Representations for Chemical-Disease Relation Extraction.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Nov-Dec;16(6):1879-1889. doi: 10.1109/TCBB.2018.2838661. Epub 2018 May 21.

Abstract

Automatically extracting the relationships between chemicals and diseases is significantly important to various areas of biomedical research and health care. Biomedical experts have built many large-scale knowledge bases (KBs) to advance the development of biomedical research. KBs contain huge amounts of structured information about entities and relationships, therefore plays a pivotal role in chemical-disease relation (CDR) extraction. However, previous researches pay less attention to the prior knowledge existing in KBs. This paper proposes a neural network-based attention model (NAM) for CDR extraction, which makes full use of context information in documents and prior knowledge in KBs. For a pair of entities in a document, an attention mechanism is employed to select important context words with respect to the relation representations learned from KBs. Experiments on the BioCreative V CDR dataset show that combining context and knowledge representations through the attention mechanism, could significantly improve the CDR extraction performance while achieve comparable results with state-of-the-art systems.

摘要

自动提取化学物质与疾病之间的关系,对生物医学研究和医疗保健的各个领域都具有重要意义。生物医学专家构建了许多大型知识库 (KB),以推动生物医学研究的发展。KB 包含大量有关实体和关系的结构化信息,因此在化学-疾病关系 (CDR) 提取中起着关键作用。然而,以前的研究对知识库中存在的先验知识关注较少。本文提出了一种基于神经网络的注意力模型 (NAM),用于 CDR 提取,该模型充分利用了文档中的上下文信息和 KB 中的先验知识。对于文档中的一对实体,我们使用注意力机制选择与从 KB 学习到的关系表示相对应的重要上下文词。在 BioCreative V CDR 数据集上的实验表明,通过注意力机制将上下文和知识表示结合起来,可以显著提高 CDR 提取性能,同时获得与最先进系统相当的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验