Suppr超能文献

搔抓网络活动期间脊髓运动神经元的突触驱动

Synaptic drive in spinal motoneurons during scratch network activity.

作者信息

Guzulaitis Robertas, Hounsgaard Jorn

机构信息

Department of Neuroscience, University of Copenhagen , Copenhagen , Denmark.

出版信息

J Neurophysiol. 2018 Nov 1;120(5):2542-2554. doi: 10.1152/jn.00094.2018. Epub 2018 Jul 11.

Abstract

Synaptic activity in motoneurons may provide unique insight in the relation between functional network activity and behavior. During scratch network activity in an ex vivo preparation from red-eared turtles ( Trachemys scripta elegans), excitatory and inhibitory synaptic current can be separated and quantified in voltage-clamp recordings. With this technique, we confirm the reciprocal synaptic excitation and inhibition in hip flexor motoneurons during ipsilateral scratching and show that out-of-phase inhibition and excitation also characterize hip extensor motoneurons during ipsi- and contralateral scratching. In contrast, inhibition precedes and partly overlaps excitation in hip flexor-like motoneurons and delays depolarization of membrane potential. We conclude that out-of-phase excitation and inhibition during rhythmic network activity is a common feature in spinal motoneurons. NEW & NOTEWORTHY During network activity, the firing pattern of individual neurons is shaped by their intrinsic conductances and synaptic input. Quantification of synaptic input is, therefore, essential to understand how the properties of individual neurons contribute to function and help to reveal the structure of the network. Here, we show how a combination of recording techniques can be used to quantify and compare the pattern of synaptic activity in different groups of motoneurons during rhythmic network activity.

摘要

运动神经元中的突触活动可能为功能网络活动与行为之间的关系提供独特的见解。在红耳龟(滑龟)离体标本的抓挠网络活动期间,可以在电压钳记录中分离并量化兴奋性和抑制性突触电流。利用这项技术,我们证实了同侧抓挠期间髋屈肌运动神经元中相互的突触兴奋和抑制,并表明在同侧和对侧抓挠期间,异相抑制和兴奋也是髋伸肌运动神经元的特征。相比之下,在类似髋屈肌的运动神经元中,抑制先于兴奋并部分与之重叠,延迟了膜电位的去极化。我们得出结论,节律性网络活动期间的异相兴奋和抑制是脊髓运动神经元的共同特征。新内容与值得注意之处 在网络活动期间,单个神经元的放电模式由其固有电导和突触输入塑造。因此,量化突触输入对于理解单个神经元的特性如何对功能产生影响以及有助于揭示网络结构至关重要。在这里,我们展示了如何结合记录技术来量化和比较节律性网络活动期间不同组运动神经元的突触活动模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验