Matmin Juan, Affendi Irwan, Endud Salasiah
Centre of Foundation Studies UiTM, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Dengkil, Dengkil 43800, Selangor, Malaysia.
Chemistry Department, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia.
Nanomaterials (Basel). 2018 Jul 10;8(7):514. doi: 10.3390/nano8070514.
The conventional synthesis route of nanostructured titania-silica (Ti-SiNS) based on sol-gel requires the use of a surfactant-type template that suffers from hazardous risks, environmental concerns, and a tedious stepwise process. Alternatively, biomaterials have been introduced as an indirect template, but still required for pre-suspended scaffold structures, which hinder their practical application. Herein, we report an easy and industrially viable direct-continuous strategy for the preparation of Ti-SiNS from nanostructured-silica (SiNS) using a hydrolyzed rice starch template. This strategy fits into the conventional industrial process flow, as it allows starch to be used directly in time-effective and less complicated steps, with the potential to upscale. The formation of Ti-SiNS is mainly attributed to Ti attachment in the SiNS frameworks after the polycondensation of the sol-gel composition under acidic-media. The SiNS had pseudo-spherical morphology (nanoparticles with the size of 13 to 22 nm), short order crystal structure (amorphous) and high surface area (538.74 m²·g). The functionalized SiNS into Ti-SiNS delivered considerable catalytic activity for epoxidation of 1-naphtol into 1,4-naphthoquinone. The described direct-continuous preparation shows great promise for a cheap, green, and efficient synthesis of Ti-SiNS for advanced applications.
基于溶胶-凝胶法的纳米结构二氧化钛-二氧化硅(Ti-SiNS)传统合成路线需要使用表面活性剂型模板,该模板存在危险风险、环境问题以及繁琐的分步过程。另外,生物材料已被用作间接模板,但仍需要预先悬浮的支架结构,这阻碍了它们的实际应用。在此,我们报道了一种简单且具有工业可行性的直接连续策略,用于使用水解大米淀粉模板从纳米结构二氧化硅(SiNS)制备Ti-SiNS。该策略符合传统工业工艺流程,因为它允许淀粉直接用于高效且不太复杂的步骤中,具有扩大规模的潜力。Ti-SiNS的形成主要归因于在酸性介质中溶胶-凝胶组合物缩聚后Ti附着在SiNS骨架中。SiNS具有准球形形态(尺寸为13至22nm的纳米颗粒)、短程晶体结构(非晶态)和高表面积(538.74m²·g)。功能化的SiNS转变为Ti-SiNS后,对将1-萘酚环氧化为1,4-萘醌具有相当大的催化活性。所描述的直接连续制备方法对于廉价、绿色且高效地合成用于先进应用的Ti-SiNS具有很大前景。