CDG:一个用于检测生物学上最接近致病基因的在线服务器及其在原发性免疫缺陷中的应用。

CDG: An Online Server for Detecting Biologically Closest Disease-Causing Genes and its Application to Primary Immunodeficiency.

作者信息

Requena David, Maffucci Patrick, Bigio Benedetta, Shang Lei, Abhyankar Avinash, Boisson Bertrand, Stenson Peter D, Cooper David N, Cunningham-Rundles Charlotte, Casanova Jean-Laurent, Abel Laurent, Itan Yuval

机构信息

St. Giles Laboratory of Human Genetics of Infectious Diseases (Rockefeller Branch), The Rockefeller University, New York, NY, United States.

Graduate School, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

出版信息

Front Immunol. 2018 Jun 27;9:1340. doi: 10.3389/fimmu.2018.01340. eCollection 2018.

Abstract

High-throughput genomic technologies yield about 20,000 variants in the protein-coding exome of each individual. A commonly used approach to select candidate disease-causing variants is to test whether the associated gene has been previously reported to be disease-causing. In the absence of known disease-causing genes, it can be challenging to associate candidate genes with specific genetic diseases. To facilitate the discovery of novel gene-disease associations, we determined the putative biologically closest known genes and their associated diseases for 13,005 human genes not currently reported to be disease-associated. We used these data to construct the closest disease-causing genes (CDG) server, which can be used to infer the closest genes with an associated disease for a user-defined list of genes or diseases. We demonstrate the utility of the CDG server in five immunodeficiency patient exomes across different diseases and modes of inheritance, where CDG dramatically reduced the number of candidate genes to be evaluated. This resource will be a considerable asset for ascertaining the potential relevance of genetic variants found in patient exomes to specific diseases of interest. The CDG database and online server are freely available to non-commercial users at: http://lab.rockefeller.edu/casanova/CDG.

摘要

高通量基因组技术在每个个体的蛋白质编码外显子组中产生约20,000个变异。一种常用的选择候选致病变异的方法是测试相关基因此前是否已被报道为致病基因。在缺乏已知致病基因的情况下,将候选基因与特定遗传疾病关联起来可能具有挑战性。为了促进新型基因-疾病关联的发现,我们确定了13,005个目前尚未报道与疾病相关的人类基因的假定生物学上最接近的已知基因及其相关疾病。我们利用这些数据构建了最接近致病基因(CDG)服务器,该服务器可用于为用户定义的基因或疾病列表推断与疾病相关的最接近基因。我们在五种不同疾病和遗传模式的免疫缺陷患者外显子组中展示了CDG服务器的效用,其中CDG显著减少了待评估的候选基因数量。该资源对于确定在患者外显子组中发现的遗传变异与感兴趣的特定疾病的潜在相关性将是一项相当宝贵的资产。CDG数据库和在线服务器可供非商业用户免费使用,网址为:http://lab.rockefeller.edu/casanova/CDG

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d1d/6030251/abb9ce4eb771/fimmu-09-01340-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索