Albanese Steven K, Parton Daniel L, Işık Mehtap, Rodríguez-Laureano Lucelenie, Hanson Sonya M, Behr Julie M, Gradia Scott, Jeans Chris, Levinson Nicholas M, Seeliger Markus A, Chodera John D
Louis V. Gerstner, Jr Graduate School of Biomedical Sciences , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.
Computational and Systems Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States.
Biochemistry. 2018 Aug 7;57(31):4675-4689. doi: 10.1021/acs.biochem.7b01081. Epub 2018 Jul 26.
Kinases play a critical role in cellular signaling and are dysregulated in a number of diseases, such as cancer, diabetes, and neurodegeneration. Therapeutics targeting kinases currently account for roughly 50% of cancer drug discovery efforts. The ability to explore human kinase biochemistry and biophysics in the laboratory is essential to designing selective inhibitors and studying drug resistance. Bacterial expression systems are superior to insect or mammalian cells in terms of simplicity and cost effectiveness but have historically struggled with human kinase expression. Following the discovery that phosphatase coexpression produced high yields of Src and Abl kinase domains in bacteria, we have generated a library of 52 His-tagged human kinase domain constructs that express above 2 μg/mL of culture in an automated bacterial expression system utilizing phosphatase coexpression (YopH for Tyr kinases and lambda for Ser/Thr kinases). Here, we report a structural bioinformatics approach to identifying kinase domain constructs previously expressed in bacteria and likely to express well in our protocol, experiments demonstrating our simple construct selection strategy selects constructs with good expression yields in a test of 84 potential kinase domain boundaries for Abl, and yields from a high-throughput expression screen of 96 human kinase constructs. Using a fluorescence-based thermostability assay and a fluorescent ATP-competitive inhibitor, we show that the highest-expressing kinases are folded and have well-formed ATP binding sites. We also demonstrate that these constructs can enable characterization of clinical mutations by expressing a panel of 48 Src and 46 Abl mutations. The wild-type kinase construct library is available publicly via Addgene.
激酶在细胞信号传导中发挥关键作用,并且在许多疾病(如癌症、糖尿病和神经退行性疾病)中失调。目前,针对激酶的疗法约占癌症药物研发工作的50%。在实验室中探索人类激酶生物化学和生物物理学的能力对于设计选择性抑制剂和研究耐药性至关重要。细菌表达系统在简单性和成本效益方面优于昆虫或哺乳动物细胞,但在历史上一直难以实现人类激酶的表达。在发现磷酸酶共表达可在细菌中高产表达Src和Abl激酶结构域后,我们构建了一个包含52个His标签的人类激酶结构域构建体的文库,这些构建体在利用磷酸酶共表达(酪氨酸激酶用YopH,丝氨酸/苏氨酸激酶用λ)的自动化细菌表达系统中,表达量高于2 μg/mL培养物。在此,我们报告一种结构生物信息学方法,用于识别先前在细菌中表达且可能在我们的方案中表达良好的激酶结构域构建体,实验表明我们简单的构建体选择策略在对Abl的84个潜在激酶结构域边界进行测试时,能选择出表达产量良好的构建体,以及96个人类激酶构建体的高通量表达筛选结果。使用基于荧光的热稳定性测定法和荧光ATP竞争性抑制剂,我们表明高表达的激酶是折叠的,并且具有结构良好的ATP结合位点。我们还证明,通过表达一组48个Src和46个Abl突变体,这些构建体能够实现对临床突变的表征。野生型激酶构建体文库可通过Addgene公开获取。