Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States.
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States.
Harmful Algae. 2018 Jul;77:43-54. doi: 10.1016/j.hal.2018.06.007. Epub 2018 Jun 18.
Predator-prey interactions of planktonic protists are fundamental to plankton dynamics and include prey selection, detection, and capture as well as predator detection and avoidance. Propulsive, morphology-specific behaviors modulate these interactions and therefore bloom dynamics. Here, interactions between the mixotrophic, harmful algal bloom (HAB) dinoflagellate Dinophysis acuminata and its ciliate prey Mesodinium rubrum were investigated through quantitative microvideography using a high-speed microscale imaging system (HSMIS). The dinoflagellate D. acuminata is shown to detect its M. rubrum prey via chemoreception while M. rubrum is alerted to D. acuminata via mechanoreception at much shorter distances (89 ± 39 μm versus 41 ± 32 μm). On detection, D. acuminata approaches M. rubrum with reduced speed. The ciliate M. rubrum responds through escape jumps that are long enough to detach its chemical trail from its surface, thereby disorienting the predator. To prevail, D. acuminata uses capture filaments and/or releases mucus to slow and eventually immobilize M. rubrum cells for easier capture. Mechanistically, results support the notion that the desmokont flagellar arrangement of D. acuminata lends itself to phagotrophy. In particular, the longitudinal flagellum plays a dominant role in generating thrust for the cell to swim forward, while at other times, it beats to supply a tethering or anchoring force to aid the generation of a posteriorly-directed, cone-shaped scanning current by the transverse flagellum. The latter is strategically positioned to generate flow for enhanced chemoreception and hydrodynamic camouflage, such that D. acuminata can detect and stealthily approach resting M. rubrum cells in the water column.
浮游原生动物的捕食者-猎物相互作用是浮游动态的基础,包括猎物选择、检测和捕获以及捕食者检测和回避。推进、形态特异性行为调节这些相互作用,从而调节浮游生物爆发动态。在这里,通过使用高速微尺度成像系统 (HSMIS) 的定量微视频技术研究了混合营养、有害藻华 (HAB) 甲藻夜光藻和其纤毛虫猎物双尾虫之间的相互作用。研究表明,甲藻夜光藻通过化学感受来检测其双尾虫猎物,而双尾虫通过机械感受在更短的距离(89 ± 39 μm 与 41 ± 32 μm)被夜光藻察觉。在检测到猎物后,夜光藻会降低速度接近双尾虫。纤毛虫双尾虫通过足够长的逃避跳跃来响应,从而将其化学尾迹从表面上脱离,从而使捕食者迷失方向。为了取得胜利,夜光藻使用捕捉丝和/或释放黏液来减缓并最终固定双尾虫细胞,以便更容易捕获。从机制上讲,结果支持这样一种观点,即夜光藻的粘液毛排列使其适合吞噬作用。特别是,纵鞭毛在为细胞向前游动产生推力方面起着主导作用,而在其他时候,它的摆动为横向鞭毛产生的向后、锥形扫描电流提供系绳或锚固力,以帮助产生向后、锥形扫描电流。后者的位置策略性地产生流动,以增强化学感受和流体动力伪装,从而使夜光藻能够检测到并悄悄接近水柱中静止的双尾虫细胞。