Suppr超能文献

双鞭甲藻和红色中缢虫之间捕食者-猎物相互作用的行为和机制特征。

Behavioral and mechanistic characteristics of the predator-prey interaction between the dinoflagellate Dinophysis acuminata and the ciliate Mesodinium rubrum.

机构信息

Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States.

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States.

出版信息

Harmful Algae. 2018 Jul;77:43-54. doi: 10.1016/j.hal.2018.06.007. Epub 2018 Jun 18.

Abstract

Predator-prey interactions of planktonic protists are fundamental to plankton dynamics and include prey selection, detection, and capture as well as predator detection and avoidance. Propulsive, morphology-specific behaviors modulate these interactions and therefore bloom dynamics. Here, interactions between the mixotrophic, harmful algal bloom (HAB) dinoflagellate Dinophysis acuminata and its ciliate prey Mesodinium rubrum were investigated through quantitative microvideography using a high-speed microscale imaging system (HSMIS). The dinoflagellate D. acuminata is shown to detect its M. rubrum prey via chemoreception while M. rubrum is alerted to D. acuminata via mechanoreception at much shorter distances (89 ± 39 μm versus 41 ± 32 μm). On detection, D. acuminata approaches M. rubrum with reduced speed. The ciliate M. rubrum responds through escape jumps that are long enough to detach its chemical trail from its surface, thereby disorienting the predator. To prevail, D. acuminata uses capture filaments and/or releases mucus to slow and eventually immobilize M. rubrum cells for easier capture. Mechanistically, results support the notion that the desmokont flagellar arrangement of D. acuminata lends itself to phagotrophy. In particular, the longitudinal flagellum plays a dominant role in generating thrust for the cell to swim forward, while at other times, it beats to supply a tethering or anchoring force to aid the generation of a posteriorly-directed, cone-shaped scanning current by the transverse flagellum. The latter is strategically positioned to generate flow for enhanced chemoreception and hydrodynamic camouflage, such that D. acuminata can detect and stealthily approach resting M. rubrum cells in the water column.

摘要

浮游原生动物的捕食者-猎物相互作用是浮游动态的基础,包括猎物选择、检测和捕获以及捕食者检测和回避。推进、形态特异性行为调节这些相互作用,从而调节浮游生物爆发动态。在这里,通过使用高速微尺度成像系统 (HSMIS) 的定量微视频技术研究了混合营养、有害藻华 (HAB) 甲藻夜光藻和其纤毛虫猎物双尾虫之间的相互作用。研究表明,甲藻夜光藻通过化学感受来检测其双尾虫猎物,而双尾虫通过机械感受在更短的距离(89 ± 39 μm 与 41 ± 32 μm)被夜光藻察觉。在检测到猎物后,夜光藻会降低速度接近双尾虫。纤毛虫双尾虫通过足够长的逃避跳跃来响应,从而将其化学尾迹从表面上脱离,从而使捕食者迷失方向。为了取得胜利,夜光藻使用捕捉丝和/或释放黏液来减缓并最终固定双尾虫细胞,以便更容易捕获。从机制上讲,结果支持这样一种观点,即夜光藻的粘液毛排列使其适合吞噬作用。特别是,纵鞭毛在为细胞向前游动产生推力方面起着主导作用,而在其他时候,它的摆动为横向鞭毛产生的向后、锥形扫描电流提供系绳或锚固力,以帮助产生向后、锥形扫描电流。后者的位置策略性地产生流动,以增强化学感受和流体动力伪装,从而使夜光藻能够检测到并悄悄接近水柱中静止的双尾虫细胞。

相似文献

2
Harmful effects of Dinophysis to the ciliate Mesodinium rubrum: Implications for prey capture.
Harmful Algae. 2016 Nov;59:82-90. doi: 10.1016/j.hal.2016.09.009. Epub 2016 Oct 7.
3
Prey Lysate Enhances Growth and Toxin Production in an Isolate of .
Toxins (Basel). 2019 Jan 21;11(1):57. doi: 10.3390/toxins11010057.
4
Role of dissolved nitrate and phosphate in isolates of and toxin-producing .
Aquat Microb Ecol. 2015;75(2):169-185. doi: 10.3354/ame01757. Epub 2015 Jun 24.
5
Impact of Feeding on Nutrient Dynamics and Bacterial Composition in a Microcosm.
Toxins (Basel). 2018 Oct 30;10(11):443. doi: 10.3390/toxins10110443.
6
Mass entrapment and lysis of Mesodinium rubrum cells in mucus threads observed in cultures with Dinophysis.
Harmful Algae. 2016 May;55:77-84. doi: 10.1016/j.hal.2016.02.001. Epub 2016 Mar 2.
7
Effect of ciliate strain, size, and nutritional content on the growth and toxicity of mixotrophic Dinophysis acuminata.
Harmful Algae. 2018 Sep;78:95-105. doi: 10.1016/j.hal.2018.08.001. Epub 2018 Aug 18.
8
Notes on the Cultivation of Two Mixotrophic Species and Their Ciliate Prey .
Toxins (Basel). 2018 Dec 1;10(12):505. doi: 10.3390/toxins10120505.
9
Heterosigma akashiwo does not serve as prey and chloroplast donor for the toxic dinoflagellate, Dinophysis acuminata.
Harmful Algae. 2022 Jan;111:102168. doi: 10.1016/j.hal.2021.102168. Epub 2021 Dec 24.
10
Role of turbulence in Dinophysis spp. growth, feeding, and toxin leakage in culture.
Harmful Algae. 2024 Aug;137:102666. doi: 10.1016/j.hal.2024.102666. Epub 2024 Jun 3.

引用本文的文献

1
encounters: temporal and spatial constraints on blooms.
J Plankton Res. 2025 Mar 16;47(2):fbae068. doi: 10.1093/plankt/fbae068. eCollection 2025 Mar-Apr.
3
The swim-and-sink behaviour of copepods: a revisit to mechanical power requirement and a new hypothesis on function.
R Soc Open Sci. 2023 Jul 12;10(7):230347. doi: 10.1098/rsos.230347. eCollection 2023 Jul.
4
Prey Lysate Enhances Growth and Toxin Production in an Isolate of .
Toxins (Basel). 2019 Jan 21;11(1):57. doi: 10.3390/toxins11010057.
5
Interannual Variability of and in a Chilean Fjord: Insights from the Realized Niche Analysis.
Toxins (Basel). 2019 Jan 5;11(1):19. doi: 10.3390/toxins11010019.

本文引用的文献

1
Mass entrapment and lysis of Mesodinium rubrum cells in mucus threads observed in cultures with Dinophysis.
Harmful Algae. 2016 May;55:77-84. doi: 10.1016/j.hal.2016.02.001. Epub 2016 Mar 2.
2
Harmful effects of Dinophysis to the ciliate Mesodinium rubrum: Implications for prey capture.
Harmful Algae. 2016 Nov;59:82-90. doi: 10.1016/j.hal.2016.09.009. Epub 2016 Oct 7.
3
The use of a mucus trap by Dinophysis acuta for the capture of Mesodinium rubrum prey under culture conditions.
Harmful Algae. 2016 Sep;58:1-7. doi: 10.1016/j.hal.2016.07.001. Epub 2016 Aug 2.
4
Role of dissolved nitrate and phosphate in isolates of and toxin-producing .
Aquat Microb Ecol. 2015;75(2):169-185. doi: 10.3354/ame01757. Epub 2015 Jun 24.
6
Flow disturbances generated by feeding and swimming zooplankton.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11738-43. doi: 10.1073/pnas.1405260111. Epub 2014 Jul 28.
7
Dinophysis toxins: causative organisms, distribution and fate in shellfish.
Mar Drugs. 2014 Jan 20;12(1):394-461. doi: 10.3390/md12010394.
8
Natural co-occurrence of Dinophysis acuminata (Dinoflagellata) and Mesodinium rubrum (Ciliophora) in thin layers in a coastal inlet.
J Eukaryot Microbiol. 2011 Jul-Aug;58(4):365-72. doi: 10.1111/j.1550-7408.2011.00559.x. Epub 2011 May 13.
9
Toxin profiles of five geographical isolates of Dinophysis spp. from North and South America.
Toxicon. 2011 Feb;57(2):275-87. doi: 10.1016/j.toxicon.2010.12.002. Epub 2010 Dec 10.
10
How dinoflagellates swim.
Protist. 2001 Dec;152(4):329-38. doi: 10.1078/1434-4610-00071.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验