Suppr超能文献

在一个土地利用混合的集水区中进行空间显式污染物负荷与河流大肠杆菌浓度综合模型研究。

Spatially explicit pollutant load-integrated in-stream E. coli concentration modeling in a mixed land-use catchment.

机构信息

Biological Systems Engineering, Virginia Polytechnic Institute and State University, 212 Seitz Hall, Blacksburg, VA 24061, USA.

Biological Systems Engineering, Virginia Polytechnic Institute and State University, 212 Seitz Hall, Blacksburg, VA 24061, USA.

出版信息

Water Res. 2018 Nov 1;144:87-103. doi: 10.1016/j.watres.2018.07.021. Epub 2018 Jul 11.

Abstract

Pathogen contamination is a major cause of surface water impairment in the United States, and fecal bacteria levels are typically used to evaluate microbial loading in bodies of water. Environmental models are considered a useful tool for evaluating watershed management practices. In this study, we assessed E. coli contamination of the Upper Stroubles Creek, Virginia, USA using the Soil and Water Assessment Tool (SWAT) model. The study area has been declared an impaired body of water due to recent bacterial contamination. Bacterial source characterizations play a critical role in such modeling exercises and especially in the case of non-point sources. As the SWAT model involves bacteria load estimation at a Hydrological Response Unit (HRU) level, we use the Spatially Explicit Load Enrichment Calculation Tool (SELECT) for our E. coli load estimations. We also evaluate current approaches to the measurement of bacterial interactions of the sediment-water interface using SWAT and the frequent measurements of streambed E. coli concentrations. For the simulation of in-stream E. coli concentrations using estimates drawn from SELECT without (with) sediment bacteria resuspension-deposition, Nash-Sutcliffe Efficiency (NSE) values of -0.41 to 0.34 (-0.19 to 0.36) are found. Moreover, in-stream E. coli concentrations measured at flow duration intervals show that the model frequently overestimates mid-range flows while underestimating low-range flows even with model improvements. The use of high-resolution E. coli loads and the consideration of sediment bacteria resuspension-deposition processes, generated higher E. coli concentrations for forested areas compared to those of urban and pasture lands, suggesting the importance of using detailed bacteria load estimations and land use information when assessing E. coli distribution in the environment.

摘要

病原体污染是美国地表水受损的主要原因,通常使用粪便细菌水平来评估水体中的微生物负荷。环境模型被认为是评估流域管理实践的有用工具。在本研究中,我们使用土壤和水评估工具(SWAT)模型评估了美国弗吉尼亚州上斯特劳布溪的大肠杆菌污染情况。由于最近的细菌污染,该研究区域已被宣布为受损水体。细菌源特征在这种建模工作中起着至关重要的作用,特别是在非点源的情况下。由于 SWAT 模型涉及在水文响应单元(HRU)水平上估计细菌负荷,因此我们使用空间显式负荷富集计算工具(SELECT)进行大肠杆菌负荷估计。我们还评估了当前使用 SWAT 测量细菌在沉积物-水界面相互作用的方法以及频繁测量河床大肠杆菌浓度的方法。对于使用 SELECT 进行的无(有)沉积物细菌再悬浮-沉积的溪流大肠杆菌浓度的模拟,没有(有)沉积物细菌再悬浮-沉积的纳什-苏特克里夫效率(NSE)值分别为-0.41 至 0.34(-0.19 至 0.36)。此外,在流量持续时间间隔测量的溪流大肠杆菌浓度表明,即使改进了模型,模型也经常高估中程流量,低估低程流量。使用高分辨率大肠杆菌负荷和考虑沉积物细菌再悬浮-沉积过程,与城市和牧场土地相比,森林地区产生的大肠杆菌浓度更高,这表明在评估环境中的大肠杆菌分布时,使用详细的细菌负荷估计和土地利用信息非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验