Suppr超能文献

从社交媒体进行药物警戒:一种改进的随机子空间方法,用于识别药物不良事件。

Pharmacovigilance from social media: An improved random subspace method for identifying adverse drug events.

机构信息

School of Management Science and Engineering, Tianjin University of Finance and Economics, Tianjin 300222, PR China.

School of Management, Hefei University of Technology, Hefei, Anhui 230009, PR China.

出版信息

Int J Med Inform. 2018 Sep;117:33-43. doi: 10.1016/j.ijmedinf.2018.06.008. Epub 2018 Jun 18.

Abstract

OBJECTIVE

Recent advances in Web 2.0 technologies have seen significant strides towards utilizing patient-generated content for pharmacovigilance. Social media-based pharmacovigilance has great potential to augment current efforts and provide regulatory authorities with valuable decision aids. Among various pharmacovigilance activities, identifying adverse drug events (ADEs) is very important for patient safety. However, in health-related discussion forums, ADEs may confound with drug indications and beneficial effects, etc. Therefore, the focus of this study is to develop a strategy to identify ADEs from other semantic types, and meanwhile to determine the drug that an ADE is associated with.

MATERIALS AND METHODS

In this study, two groups of features, i.e., shallow linguistic features and semantic features, are explored. Moreover, motivated and inspired by the characteristics of explored two feature categories for social media-based ADE identification, an improved random subspace method, called Stratified Sampling-based Random Subspace (SSRS), is proposed. Unlike conventional random subspace method that applies random sampling for subspace selection, SSRS adopts stratified sampling-based subspace selection strategy.

RESULTS

A case study on heart disease discussion forums is performed to evaluate the effectiveness of the SSRS method. Experimental results reveal that the proposed SSRS method significantly outperforms other compared ensemble methods and existing approaches for ADE identification.

DISCUSSION AND CONCLUSION

Our proposed method is easy to implement since it is based on two feature sets that can be naturally derived, and therefore, can omit artificial stratum generation efforts. Moreover, SSRS has great potential of being applied to deal with other high-dimensional problems that can represent original data from two different aspects.

摘要

目的

Web 2.0 技术的最新进展在利用患者生成内容进行药物警戒方面取得了重大进展。基于社交媒体的药物警戒具有极大的潜力来增强当前的努力,并为监管机构提供有价值的决策辅助。在各种药物警戒活动中,识别不良药物事件(ADE)对于患者安全非常重要。然而,在与健康相关的讨论论坛中,ADE 可能与药物适应症和有益效果等混淆。因此,本研究的重点是开发一种从其他语义类型中识别 ADE 的策略,同时确定与 ADE 相关的药物。

材料与方法

在这项研究中,探索了两组特征,即浅层语言特征和语义特征。此外,受探索的用于社交媒体 ADE 识别的两类特征的特点的启发,提出了一种改进的随机子空间方法,称为基于分层抽样的随机子空间(SSRS)。与传统的随机子空间方法不同,后者对子空间选择应用随机抽样,SSRS 采用基于分层抽样的子空间选择策略。

结果

在心脏病讨论论坛上进行了案例研究,以评估 SSRS 方法的有效性。实验结果表明,与其他比较的集成方法和现有的 ADE 识别方法相比,所提出的 SSRS 方法显著优越。

讨论与结论

我们提出的方法易于实现,因为它基于可以自然衍生的两个特征集,因此可以省略人工分层生成的努力。此外,SSRS 具有极大的潜力应用于处理可以从两个不同方面表示原始数据的其他高维问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验