Suppr超能文献

孔密度对气体通过纳米多孔石墨烯膜渗透的影响。

Effect of pore density on gas permeation through nanoporous graphene membranes.

机构信息

Department of Chemistry, University of California, Riverside, California 92521, USA.

出版信息

Nanoscale. 2018 Aug 2;10(30):14660-14666. doi: 10.1039/c8nr02625d.

Abstract

Pore density is an important factor dictating gas separations through one-atom-thin nanoporous membranes, but how it influences the gas permeation is not fully understood. Here we use molecular dynamics (MD) simulations to investigate gas permeation through nanoporous graphene membranes with the same pore size (3.0 Å × 3.8 Å in dimensions) but varying pore densities (from 0.01 to 1.28 nm-2). We find that higher pore density leads to higher permeation per unit area of membrane for both CO2 and He, but the rate of the increase decreases greatly for CO2 at high pore densities. As a result, the per-pore permeance decreases for CO2 but remains relatively constant for He with the pore density, leading to a dramatic change in CO2/He selectivity. By separating the total flux into direct flux and surface flux, we find that He permeation is dominated by direct flux and hence the per-pore permeation rate is roughly constant with the pore density. In contrast, CO2 permeation is dominated by surface flux and the overall decreasing trend of the per-pore permeation rate of CO2 with the pore density can be explained by the decreasing per-pore coverage of CO2 on the feed side with the pore density. Our work now provides a complete picture of the pore-density dependence of gas permeation through one-atom-thin nanoporous membranes.

摘要

孔径密度是影响单原子厚纳米多孔膜气体分离的一个重要因素,但它如何影响气体渗透还不完全清楚。在这里,我们使用分子动力学(MD)模拟来研究具有相同孔径(3.0Å×3.8Å)但孔径密度不同(0.01 至 1.28nm-2)的纳米多孔石墨烯膜中的气体渗透。我们发现,对于 CO2 和 He,较高的孔径密度会导致单位膜面积的渗透更高,但在高孔径密度下,CO2 的增长率会大大降低。结果,CO2 的每孔渗透率降低,但 He 的渗透率相对恒定,导致 CO2/He 选择性发生剧烈变化。通过将总通量分为直接通量和表面通量,我们发现 He 渗透主要由直接通量控制,因此每孔渗透率大致随孔径密度而恒定。相比之下,CO2 渗透主要由表面通量控制,随着孔径密度的增加,CO2 的每孔渗透率的整体下降趋势可以用 CO2 在进料侧的每孔覆盖率随孔径密度的降低来解释。我们的工作现在提供了单原子厚纳米多孔膜中气体渗透随孔径密度变化的完整图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验