Suppr超能文献

心智理论中情绪推理的计算模型:综述与路线图。

Computational Models of Emotion Inference in Theory of Mind: A Review and Roadmap.

机构信息

A*STAR Artificial Intelligence Initiative, Agency for Science, Technology and Research (A*STAR).

Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR).

出版信息

Top Cogn Sci. 2019 Apr;11(2):338-357. doi: 10.1111/tops.12371. Epub 2018 Jul 31.

Abstract

Research on social cognition has fruitfully applied computational modeling approaches to explain how observers understand and reason about others' mental states. By contrast, there has been less work on modeling observers' understanding of emotional states. We propose an intuitive theory framework to studying affective cognition-how humans reason about emotions-and derive a taxonomy of inferences within affective cognition. Using this taxonomy, we review formal computational modeling work on such inferences, including causal reasoning about how others react to events, reasoning about unseen causes of emotions, reasoning with multiple cues, as well as reasoning from emotions to other mental states. In addition, we provide a roadmap for future research by charting out inferences-such as hypothetical and counterfactual reasoning about emotions-that are ripe for future computational modeling work. This framework proposes unifying these various types of reasoning as Bayesian inference within a common "intuitive Theory of Emotion." Finally, we end with a discussion of important theoretical and methodological challenges that lie ahead in modeling affective cognition.

摘要

社会认知研究成功地应用了计算建模方法来解释观察者如何理解和推理他人的心理状态。相比之下,对于建模观察者对情绪状态的理解,研究就较少了。我们提出了一个直观的理论框架来研究情感认知——人类如何推理情绪——并推导出情感认知中推理的分类法。使用这个分类法,我们回顾了关于这些推理的正式计算建模工作,包括关于他人对事件反应的因果推理、推理未观察到的情绪原因、使用多个线索推理,以及从情绪推理到其他心理状态。此外,我们通过绘制出未来计算建模工作成熟的推理,如关于情绪的假设和反事实推理,为未来的研究提供了路线图。该框架提出将各种类型的推理统一为在共同的“情感直观理论”内的贝叶斯推理。最后,我们讨论了在情感认知建模中面临的重要理论和方法学挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验