Suppr超能文献

构建单子叶植物死亡之树:富含大型化石的姜目植物的研究进展与挑战。

Building the monocot tree of death: Progress and challenges emerging from the macrofossil-rich Zingiberales.

机构信息

Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

Museum of Paleontology, University of Michigan, Ann Arbor, MI, 48109, USA.

出版信息

Am J Bot. 2018 Aug;105(8):1389-1400. doi: 10.1002/ajb2.1123. Epub 2018 Aug 2.

Abstract

PREMISE OF THE STUDY

Inclusion of fossils in phylogenetic analyses is necessary in order to construct a comprehensive "tree of death" and elucidate evolutionary history of taxa; however, such incorporation of fossils in phylogenetic reconstruction is dependent on the availability and interpretation of extensive morphological data. Here, the Zingiberales, whose familial relationships have been difficult to resolve with high support, are used as a case study to illustrate the importance of including fossil taxa in systematic studies.

METHODS

Eight fossil taxa and 43 extant Zingiberales were coded for 39 morphological seed characters, and these data were concatenated with previously published molecular sequence data for analysis in the program MrBayes.

KEY RESULTS

Ensete oregonense is confirmed to be part of Musaceae, and the other seven fossils group with Zingiberaceae. There is strong support for Spirematospermum friedrichii, Spirematospermum sp. 'Goth', S. wetzleri, and Striatornata sanantoniensis in crown Zingiberaceae while "Musa" cardiosperma, Spirematospermum chandlerae, and Tricostatocarpon silvapinedae are best considered stem Zingiberaceae. Inclusion of fossils explains how different topologies from morphological and molecular data sets is due to shared plesiomorphic characters shared by Musaceae, Zingiberaceae, and Costaceae, and most of the fossils.

CONCLUSIONS

Inclusion of eight fossil taxa expands the Zingiberales tree and helps explain the difficulty in resolving relationships. Inclusion of fossils was possible in part due to a large morphological data set built using nondestructive microcomputed tomography data. Collaboration between paleo- and neobotanists and technology such as microcomputed tomography will help to build the tree of death and ultimately improve our understanding of the evolutionary history of monocots.

摘要

研究前提

为了构建全面的“死亡之树”并阐明分类群的进化历史,在系统发育分析中纳入化石是必要的;然而,这种将化石纳入系统发育重建的做法取决于广泛形态数据的可用性和解释。在这里,姜目(Zingiberales)作为一个案例研究,其家族关系很难用高支持率来解决,用于说明在系统研究中纳入化石分类群的重要性。

方法

对 8 个化石分类群和 43 个现存姜目植物进行了 39 个种子形态特征的编码,并将这些数据与之前发表的分子序列数据串联起来,在 MrBayes 程序中进行分析。

主要结果

证实恩塞特奥勒根塞(Ensete oregonense)属于芭蕉科(Musaceae),其余 7 个化石与姜科(Zingiberaceae)聚在一起。斯派里托斯佩鲁姆弗里德里希(Spirematospermum friedrichii)、斯派里托斯佩鲁姆“哥特”(Spirematospermum sp. 'Goth')、斯派里托斯佩鲁姆·韦策利(S. wetzleri)和斯特里阿托纳塔桑塔安东尼(Striatornata sanantoniensis)在姜目冠部具有强烈的支持力,而“Musas”卡迪奥斯佩鲁姆(Musa cardiosperma)、斯派里托斯佩鲁姆钱德勒(Spirematospermum chandlerae)和特里科斯塔托卡蓬西尔瓦平代(Tricostatocarpon silvapinedae)最好被认为是姜目茎部。化石的纳入解释了为什么来自形态学和分子数据集的不同拓扑结构是由于芭蕉科、姜科和菖蒲科以及大多数化石共同具有的共享的原始特征。

结论

纳入 8 个化石分类群扩展了姜目树,并有助于解释关系难以解决的原因。化石的纳入部分是由于使用无损微计算机断层扫描数据构建的大型形态数据集。古植物学家和新植物学家之间的合作以及微计算机断层扫描等技术将有助于构建死亡之树,最终提高我们对单子叶植物进化历史的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验