Suppr超能文献

壳寡糖接枝纤维素纳米晶稳定的银纳米颗粒的增强抗菌性能和细胞相容性

Enhanced Antibacterial Performance and Cytocompatibility of Silver Nanoparticles Stabilized by Cellulose Nanocrystal Grafted with Chito-Oligosaccharides.

作者信息

Ni Xiaohui, Wang Jinru, Yue Yiying, Cheng Wanli, Wang Dong, Han Guangping

机构信息

Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.

College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.

出版信息

Materials (Basel). 2018 Aug 2;11(8):1339. doi: 10.3390/ma11081339.

Abstract

The agglomeration of silver nanoparticles (AgNPs) results in poor antibacterial performance, and the accumulation of silver in the human body threatens human health. Preparing a matrix is a technique worth considering as it not only prevents the aggregation of AgNPs but also reduces deposition of AgNPs in the human body. In this paper, carboxy-cellulose nanocrystals (CCNC) were prepared by a simple one-step acid hydrolysis method. Chito-oligosaccharides (CSos) were grafted onto the surface of CCNC to form CSos-CCNC composite nanoparticles. CCNC and CSos-CCNC were used as stabilizers for deposing AgNPs and two types of complexes-AgNPs-CCNC and AgNPs-CSos-CCNC-were obtained, respectively. The influence of the two stabilizer matrices-CCNC and CSos-CCNC-on the morphology, thermal behavior, crystal structure, antibacterial activity, and cell compatibility of AgNPs-CCNC and AgNPs-CSos-CCNC were examined. The results showed that the AgNPs deposited on the CSos-CCNC surface had a smaller average diameter and a narrower particle size distribution compared with the ones deposited on CCNC. The thermal stability of AgNPs-CSos-CCNC was better than that of AgNPs-CCNC. AgNPs did not affect the crystalline structure of CCNC and CSos-CCNC. The antibacterial activity of AgNPs-CSos-CCNC was better than that of AgNPs-CCNC based on antibacterial studies using , , and The cytotoxicity of AgNPs-CSos-CCNC was remarkably lower than that of AgNPs-CCNC.

摘要

银纳米颗粒(AgNPs)的团聚导致抗菌性能不佳,且银在人体中的积累会威胁人类健康。制备一种基质是一项值得考虑的技术,因为它不仅能防止AgNPs的聚集,还能减少AgNPs在人体中的沉积。本文采用简单的一步酸水解法制备了羧基纤维素纳米晶体(CCNC)。将壳寡糖(CSos)接枝到CCNC表面以形成CSos-CCNC复合纳米颗粒。CCNC和CSos-CCNC用作沉积AgNPs的稳定剂,分别得到了两种类型的复合物——AgNPs-CCNC和AgNPs-CSos-CCNC。研究了两种稳定剂基质——CCNC和CSos-CCNC——对AgNPs-CCNC和AgNPs-CSos-CCNC的形态、热行为、晶体结构、抗菌活性和细胞相容性的影响。结果表明,与沉积在CCNC上的AgNPs相比,沉积在CSos-CCNC表面的AgNPs平均直径更小,粒径分布更窄。AgNPs-CSos-CCNC的热稳定性优于AgNPs-CCNC。AgNPs不影响CCNC和CSos-CCNC的晶体结构。基于使用[具体细菌名称1]、[具体细菌名称2]和[具体细菌名称3]的抗菌研究,AgNPs-CSos-CCNC的抗菌活性优于AgNPs-CCNC。AgNPs-CSos-CCNC的细胞毒性明显低于AgNPs-CCNC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85ad/6119937/e459987367f6/materials-11-01339-g001.jpg

相似文献

2
Controllability, antiproliferative activity, Ag release, and flow behavior of silver nanoparticles deposited onto cellulose nanocrystals.
Int J Biol Macromol. 2023 Jan 15;225:899-910. doi: 10.1016/j.ijbiomac.2022.11.154. Epub 2022 Nov 18.
3
Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose.
Carbohydr Polym. 2016 Aug 20;147:500-508. doi: 10.1016/j.carbpol.2016.03.029. Epub 2016 Apr 11.
6
Photochemical Deposition of Silver Nanoparticles on Clays and Exploring Their Antibacterial Activity.
ACS Appl Mater Interfaces. 2016 Aug 24;8(33):21640-7. doi: 10.1021/acsami.6b05292. Epub 2016 Aug 10.
7
Fabrication of poly (styrene-acrylate)/silver nanoparticle-graphene oxide composite antibacterial by in situ Pickering emulsion polymerization.
J Mech Behav Biomed Mater. 2023 Aug;144:105877. doi: 10.1016/j.jmbbm.2023.105877. Epub 2023 May 1.
8
Cellulose Whiskers Influence the Morphology and Antibacterial Properties of Silver Nanoparticles Composites.
J Nanosci Nanotechnol. 2018 Jul 1;18(7):4876-4883. doi: 10.1166/jnn.2018.15285.
9
Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.
Carbohydr Polym. 2013 Nov 6;98(2):1573-7. doi: 10.1016/j.carbpol.2013.07.065. Epub 2013 Aug 7.

本文引用的文献

1
Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids.
J Mater Chem B. 2015 Jan 28;3(4):603-611. doi: 10.1039/c4tb01647e. Epub 2014 Nov 27.
3
Disinfection of waterborne viruses using silver nanoparticle-decorated silica hybrid composites in water environments.
Sci Total Environ. 2018 Jun 1;625:477-485. doi: 10.1016/j.scitotenv.2017.12.318. Epub 2017 Dec 29.
4
Antimicrobial Nanomaterials: Why Evolution Matters.
Nanomaterials (Basel). 2017 Sep 21;7(10):283. doi: 10.3390/nano7100283.
5
Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds.
Int J Nanomedicine. 2017 Jan 4;12:295-304. doi: 10.2147/IJN.S122357. eCollection 2017.
6
Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity.
Nanomedicine. 2016 Apr;12(3):789-799. doi: 10.1016/j.nano.2015.11.016. Epub 2015 Dec 24.
7
Rapid evolution of silver nanoparticle resistance in Escherichia coli.
Front Genet. 2015 Feb 17;6:42. doi: 10.3389/fgene.2015.00042. eCollection 2015.
9
Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium.
Carbohydr Polym. 2012 Aug 1;89(4):1159-65. doi: 10.1016/j.carbpol.2012.03.089. Epub 2012 Apr 16.
10
Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines.
Chem Soc Rev. 2014 Mar 7;43(5):1501-18. doi: 10.1039/c3cs60218d. Epub 2013 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验