Institute für Physik & IMN MacroNano (ZIK) , Technische Universität Ilmenau , Ilmenau 98693 , Germany.
ACS Appl Mater Interfaces. 2018 Aug 29;10(34):29092-29099. doi: 10.1021/acsami.8b08078. Epub 2018 Aug 17.
It is a widely used strategy to enhance gas sensor sensitivity by improving its surface area, but this process, including bonding the sensing block into a device substrate, needs complex manipulations. This work shows a concept of creating adsorption active sites, in which an SnO layer (6.85 nm thin) is directly coated on a triangle array substrate to be of an ensemble of triangular convex adsorption active sites (TCAASs). The resultant SnO gas sensors, with TCAAS periods ranging from 289 to 1154 nm, exhibit an adsorption-active-site-dependent sensitivity and present a low detection limit of around 6 ppm ethanol gas at room temperature. By characterizations of Kelvin force microscopy, a large surface potential variation exists on these adsorption active sites after introducing ethanol gas, distinctly showing a local adsorption enhancement. These results confirm that the creation of adsorption active sites can efficiently increase surface adsorption of a sensor to realize its sensitive gas-sensing.
通过提高传感器的表面积来增强其灵敏度是一种广泛应用的策略,但这一过程包括将感测块与设备基底结合,需要复杂的操作。本工作展示了一种创建吸附活性位的概念,其中 SnO 层(6.85nm 厚)直接涂覆在三角形阵列基底上,形成三角形凸吸附活性位(TCAAS)的集合体。所得 SnO 气体传感器,TCAAS 周期从 289nm 到 1154nm 不等,表现出吸附活性位依赖性的灵敏度,并在室温下对约 6ppm 的乙醇气体表现出低检测限。通过 Kelvin 力显微镜的表征,在引入乙醇气体后,这些吸附活性位上存在较大的表面电势变化,明显显示出局部吸附增强。这些结果证实,创建吸附活性位可以有效地增加传感器的表面吸附,从而实现其灵敏的气体传感。