Department of Biophysics, Institute of Physics , Maria Curie-Sklodowska University , 20-031 Lublin , Poland.
Department of Biophysics, Institute of Biology , Maria Curie-Sklodowska University , 20-031 Lublin , Poland.
Mol Pharm. 2018 Sep 4;15(9):4202-4213. doi: 10.1021/acs.molpharmaceut.8b00572. Epub 2018 Aug 20.
Amphotericin B is a lifesaving polyene antibiotic used in the treatment of systemic mycoses. Unfortunately, the pharmacological applicability of this drug is limited because of its severe toxic side effects. At the same time, the lack of a well-defined mechanism of selectivity hampers the efforts to rationally design safer derivatives. As the drug primarily targets the biomembranes of both fungi and humans, new insights into the binding of amphotericin B to lipid membranes can be helpful in unveiling the molecular mechanisms underlying both its pharmacological activity and toxicity. We use fluorescence-lifetime-imaging microscopy combined with fluorescence-emission spectroscopy in the microscale to study the interaction of amphotericin B with single lipid bilayers, using model systems based on giant unilamellar liposomes formed with three lipids: dipalmitoylphosphatidylcholine (DPPC), dimirystoylphosphatidylcholine (DMPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). The results show that amphotericin B introduced into the water phase as a DMSO solution binds to the membrane as dimers and small-molecular aggregates that we identify as tetramers and trimers. Fluorescence-detected linear-dichroism measurements revealed high orientational freedom of all the molecular-organization forms with respect to the membrane plane, which suggests that the drug partially binds to the membrane surface. The presence of sterols in the lipid phase (cholesterol but particularly ergosterol at 30 mol %) promotes the penetration of drug molecules into the lipid membrane, as concluded on the basis of the decreased orientation angle of amphotericin B molecules with respect to the axis normal to the membrane plane. Moreover, ergosterol facilitates the association of amphotericin B dimers into aggregated structures that can play a role in membrane destabilization or permeabilization. The presence of cholesterol inhibits the formation of small aggregates in the lipid phase of liposomes, making this system a promising candidate for a low-toxicity antibiotic-delivery system. Our conclusions are supported with molecular simulations that reveal the conformational properties of AmB oligomers in both aqueous solution and lipid bilayers of different compositions.
两性霉素 B 是一种救命的多烯抗生素,用于治疗系统性真菌感染。不幸的是,由于其严重的毒性副作用,该药物的药理学适用性受到限制。同时,缺乏明确的选择性机制也阻碍了合理设计更安全衍生物的努力。由于该药物主要靶向真菌和人类的生物膜,因此深入了解两性霉素 B 与脂质膜的结合可以帮助揭示其药理学活性和毒性的分子机制。我们使用荧光寿命成像显微镜结合微尺度荧光发射光谱,使用基于形成三种脂质的巨大单层脂质体的模型系统,研究两性霉素 B 与单层脂质双层的相互作用:二棕榈酰磷脂酰胆碱 (DPPC)、二肉豆蔻酰磷脂酰胆碱 (DMPC) 和 1-棕榈酰-2-油酰磷脂酰胆碱 (POPC)。结果表明,两性霉素 B 以 DMSO 溶液的形式引入水相时,会与膜结合形成二聚体和小分子聚集体,我们将其鉴定为四聚体和三聚体。荧光检测的线性二色性测量显示,所有分子组织形式相对于膜平面都具有高度的取向自由度,这表明药物部分结合到膜表面。脂质相中的甾醇(胆固醇,但特别是 30mol%的麦角甾醇)的存在促进了药物分子进入脂质膜,这是基于两性霉素 B 分子相对于垂直于膜平面的轴的取向角度减小得出的。此外,麦角甾醇促进两性霉素 B 二聚体形成聚集结构,这可能在膜去稳定或通透性方面发挥作用。胆固醇的存在抑制了脂质相中小聚集体的形成,使该系统成为一种有前途的低毒性抗生素递送系统。我们的结论得到了分子模拟的支持,该模拟揭示了两性霉素 B 低聚物在水溶液和不同组成的脂质双层中的构象特性。