Suppr超能文献

非活化一级 C-H 键的选择性和对映选择性功能化的催化剂设计。

Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C-H bonds.

机构信息

Department of Chemistry, Emory University, Atlanta, GA, USA.

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.

出版信息

Nat Chem. 2018 Oct;10(10):1048-1055. doi: 10.1038/s41557-018-0087-7. Epub 2018 Aug 6.

Abstract

C-H functionalization represents a promising approach for the synthesis of complex molecules. Instead of relying on modifying the functional groups present in a molecule, the synthetic sequence is achieved by carrying out selective reactions on the C-H bonds, which traditionally would have been considered to be the unreactive components of a molecule. A major challenge is to design catalysts to control both the site- and stereoselectivity of the C-H functionalization. We have been developing dirhodium catalysts with different selectivity profiles in C-H functionalization reactions with donor/acceptor carbenes as reactive intermediates. Here we describe a new dirhodium catalyst capable of the functionalization of non-activated primary C-H bonds with high levels of site selectivity and enantioselectivity.

摘要

C-H 键功能化代表了合成复杂分子的一种很有前途的方法。它不是通过修饰分子中现有的官能团来实现,而是通过对 C-H 键进行选择性反应来实现合成序列,这些 C-H 键在传统上被认为是分子中无反应性的组成部分。一个主要的挑战是设计催化剂来控制 C-H 功能化的位点和立体选择性。我们一直在开发具有不同选择性的二钌催化剂,用于作为反应中间体的给体/受体卡宾的 C-H 功能化反应。在这里,我们描述了一种新的二钌催化剂,它能够对非活化的伯 C-H 键进行高位点选择性和对映选择性的功能化。

相似文献

1
Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C-H bonds.
Nat Chem. 2018 Oct;10(10):1048-1055. doi: 10.1038/s41557-018-0087-7. Epub 2018 Aug 6.
2
Dirhodium tetracarboxylates as catalysts for selective intermolecular C-H functionalization.
Nat Rev Chem. 2019 Jun;3(6):347-360. doi: 10.1038/s41570-019-0099-x. Epub 2019 May 7.
3
Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
Nature. 2017 Nov 30;551(7682):609-613. doi: 10.1038/nature24641. Epub 2017 Nov 20.
5
D-Symmetric Dirhodium Tetrakis(binaphthylphosphate) Catalysts for Enantioselective Functionalization of Unactivated C-H Bonds.
J Am Chem Soc. 2024 Jul 17;146(28):19460-19473. doi: 10.1021/jacs.4c06023. Epub 2024 Jul 3.
6
Site-selective and stereoselective functionalization of unactivated C-H bonds.
Nature. 2016 May 12;533(7602):230-4. doi: 10.1038/nature17651.
7
Catalyst-Controlled Selective Functionalization of Unactivated C-H Bonds in the Presence of Electronically Activated C-H Bonds.
J Am Chem Soc. 2018 Sep 26;140(38):12247-12255. doi: 10.1021/jacs.8b07534. Epub 2018 Sep 17.
9
Distal Allylic/Benzylic C-H Functionalization of Silyl Ethers Using Donor/Acceptor Rhodium(II) Carbenes.
Angew Chem Int Ed Engl. 2020 May 4;59(19):7397-7402. doi: 10.1002/anie.201916530. Epub 2020 Mar 12.
10
Enantioselective Intermolecular C-H Functionalization of Primary Benzylic C-H Bonds Using ((Aryl)(diazo)methyl)phosphonates.
ACS Catal. 2023 Dec 11;14(1):124-130. doi: 10.1021/acscatal.3c04661. eCollection 2024 Jan 5.

引用本文的文献

2
Site- and enantioselective B-H functionalization of carboranes.
Nat Commun. 2025 May 6;16(1):4182. doi: 10.1038/s41467-025-59410-0.
4
A Practical Guide to Computational Tools for Engineering Biocatalytic Properties.
Int J Mol Sci. 2025 Jan 24;26(3):980. doi: 10.3390/ijms26030980.
5
Substitution, Elimination, and Integration of Methyl Groups in Terpenes Initiated by C-H Bond Functionalization.
ACS Cent Sci. 2024 Aug 16;10(11):2016-2027. doi: 10.1021/acscentsci.4c01108. eCollection 2024 Nov 27.
7
Facile Recovery and Recycling of a Soluble Dirhodium Catalyst in Asymmetric Cyclopropanation via a Catalyst-in-Bag System.
Org Process Res Dev. 2024 Oct 23;28(11):4146-4155. doi: 10.1021/acs.oprd.4c00400. eCollection 2024 Nov 15.
8
D-Symmetric Dirhodium Tetrakis(binaphthylphosphate) Catalysts for Enantioselective Functionalization of Unactivated C-H Bonds.
J Am Chem Soc. 2024 Jul 17;146(28):19460-19473. doi: 10.1021/jacs.4c06023. Epub 2024 Jul 3.
9
Enantioselective Intermolecular C-H Functionalization of Primary Benzylic C-H Bonds Using ((Aryl)(diazo)methyl)phosphonates.
ACS Catal. 2023 Dec 11;14(1):124-130. doi: 10.1021/acscatal.3c04661. eCollection 2024 Jan 5.
10
A tautomerized ligand enabled meta selective C-H borylation of phenol.
Nat Commun. 2023 Oct 30;14(1):6906. doi: 10.1038/s41467-023-42310-6.

本文引用的文献

1
Site-selective and stereoselective functionalization of non-activated tertiary C-H bonds.
Nature. 2017 Nov 30;551(7682):609-613. doi: 10.1038/nature24641. Epub 2017 Nov 20.
2
An artificial metalloenzyme with the kinetics of native enzymes.
Science. 2016 Oct 7;354(6308):102-106. doi: 10.1126/science.aah4427.
3
Site-selective and stereoselective functionalization of unactivated C-H bonds.
Nature. 2016 May 12;533(7602):230-4. doi: 10.1038/nature17651.
4
Site-selective arene C-H amination via photoredox catalysis.
Science. 2015 Sep 18;349(6254):1326-30. doi: 10.1126/science.aac9895.
5
Alcohols as alkylating agents in heteroarene C-H functionalization.
Nature. 2015 Sep 3;525(7567):87-90. doi: 10.1038/nature14885. Epub 2015 Aug 26.
6
Manganese-catalyzed late-stage aliphatic C-H azidation.
J Am Chem Soc. 2015 Apr 29;137(16):5300-3. doi: 10.1021/jacs.5b01983. Epub 2015 Apr 14.
7
The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.
Nature. 2015 Mar 5;519(7541):74-7. doi: 10.1038/nature14255.
8
Metal-catalysed azidation of tertiary C-H bonds suitable for late-stage functionalization.
Nature. 2015 Jan 29;517(7536):600-4. doi: 10.1038/nature14127.
9
Overcoming the limitations of directed C-H functionalizations of heterocycles.
Nature. 2014 Nov 20;515(7527):389-93. doi: 10.1038/nature13885. Epub 2014 Nov 10.
10
C-H functionalization in the synthesis of amino acids and peptides.
Chem Rev. 2014 Sep 24;114(18):8775-806. doi: 10.1021/cr500200x. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验