Suppr超能文献

帕金森病基底神经节通路的功能分离。

Functional segregation of basal ganglia pathways in Parkinson's disease.

机构信息

Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.

Department of Biological Psychology and Cognitive Neuroscience, Freie Universität Berlin, Germany.

出版信息

Brain. 2018 Sep 1;141(9):2655-2669. doi: 10.1093/brain/awy206.

Abstract

Dopamine exerts modulatory signals on cortex-basal ganglia circuits to enable flexible motor control. Parkinson's disease is characterized by a loss of dopaminergic innervation in the basal ganglia leading to complex motor and non-motor symptoms. Clinical symptom alleviation through dopaminergic medication and deep brain stimulation in the subthalamic nucleus likely depends on a complex interplay between converging basal ganglia pathways. As a unique translational research platform, deep brain stimulation allows instantaneous investigation of functional effects of subthalamic neuromodulation in human patients with Parkinson's disease. The present study aims at disentangling the role of the inhibitory basal ganglia pathways in cognitive and kinematic aspects of automatic and controlled movements in healthy and parkinsonian states by combining behavioural experiments, clinical observations, whole-brain deep brain stimulation fibre connectivity mapping and computational modelling. Twenty patients with Parkinson's disease undergoing subthalamic deep brain stimulation and 20 age-matched healthy controls participated in a visuomotor tracking task requiring normal (automatic) and inverted (controlled) reach movements. Parkinsonian patients on and off deep brain stimulation presented complex patterns of reaction time and kinematic changes, when compared to healthy controls. Stimulation of cortico-subthalamic fibres was correlated with reduced reaction time adaptation to task demand, but not kinematic aspects of motor control or alleviation of Parkinson's disease motor signs. By using clinically, behaviourally and fibre tracking informed computational models, our study reveals that loss of cognitive adaptation can be attributed to modulation of the hyperdirect pathway, while kinematic depends on suppression of indirect pathway activity. Our findings suggest that hyperdirect and indirect pathways, converging in the subthalamic nucleus, are differentially involved in cognitive aspects of cautious motor preparation and kinematic gain control during motor performance. Subthalamic deep brain stimulation modulates but does not restore these functions. Intelligent stimulation algorithms could re-enable flexible motor control in Parkinson's disease when adapted to instantaneous environmental demand. Our results may inspire new innovative pathway-specific approaches to reduce side effects and increase therapeutic efficacy of neuromodulation in patients with Parkinson's disease.

摘要

多巴胺对皮质-基底节回路施加调节信号,以实现灵活的运动控制。帕金森病的特征是基底节中的多巴胺能神经支配丧失,导致复杂的运动和非运动症状。通过多巴胺能药物治疗和丘脑底核深部脑刺激来缓解临床症状,可能取决于基底节途径的复杂相互作用。作为一种独特的转化研究平台,深部脑刺激允许即时研究帕金森病患者的丘脑底核神经调节的功能影响。本研究旨在通过结合行为实验、临床观察、全脑深部脑刺激纤维连接映射和计算建模,解开抑制性基底节通路在健康和帕金森状态下自动和受控运动的认知和运动学方面的作用。20 名接受丘脑底核深部脑刺激的帕金森病患者和 20 名年龄匹配的健康对照者参加了一项视觉运动跟踪任务,要求进行正常(自动)和倒置(受控)伸手运动。与健康对照组相比,帕金森病患者在接受和不接受深部脑刺激时,反应时间和运动学变化呈现出复杂的模式。刺激皮质-丘脑底核纤维与减少对任务需求的反应时间适应相关,但与运动控制的运动学方面或帕金森病运动症状的缓解无关。通过使用临床、行为和纤维跟踪告知的计算模型,我们的研究表明,认知适应的丧失可归因于直接通路的调制,而运动学则取决于间接通路活动的抑制。我们的发现表明,在丘脑底核中汇聚的直接通路和间接通路,在谨慎运动准备的认知方面和运动表现期间的运动学增益控制中,分别涉及到认知方面。丘脑底核深部脑刺激可以调节但不能恢复这些功能。当适应即时环境需求时,智能刺激算法可以在帕金森病中重新实现灵活的运动控制。我们的结果可能会激发新的创新途径特异性方法,以减少神经调节的副作用并提高帕金森病患者的治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验