James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA.
Phys Rev Lett. 2018 Jul 20;121(3):030402. doi: 10.1103/PhysRevLett.121.030402.
We demonstrate a density-dependent gauge field, induced by atomic interactions, for quantum gases. The gauge field results from the synchronous coupling between the interactions and micromotion of the atoms in a modulated two-dimensional optical lattice. As a first step, we show that a coherent shaking of the lattice in two directions can couple the momentum and interactions of atoms and break the fourfold symmetry of the lattice. We then create a full interaction-induced gauge field by modulating the interaction strength in synchrony with the lattice shaking. When a condensate is loaded into this shaken lattice, the gauge field acts to preferentially prepare the system in different quasimomentum ground states depending on the modulation phase. We envision that these interaction-induced fields, created by fine control of micromotion, will provide a stepping stone to model new quantum phenomena within and beyond condensed matter physics.
我们展示了一种由原子相互作用引起的密度依赖规范场,用于量子气体。规范场是由相互作用和原子在调制二维光晶格中的微运动之间的同步耦合产生的。作为第一步,我们表明,在两个方向上对晶格进行相干振动可以耦合原子的动量和相互作用,并打破晶格的四重对称。然后,我们通过与晶格振动同步调制相互作用强度来创建完整的相互作用诱导规范场。当将凝聚体加载到这个振动的晶格中时,规范场作用优先将系统准备在不同的准动量基态,这取决于调制相位。我们设想,通过对微运动的精细控制产生的这些相互作用诱导场将为在凝聚态物理内外模拟新的量子现象提供一个垫脚石。