Suppr超能文献

miR-29 在宫内发育受限啮齿动物模型中介导子代肺表型的作用。

Role of miR-29 in mediating offspring lung phenotype in a rodent model of intrauterine growth restriction.

机构信息

Department of Obstetrics and Gynecology, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles, Medical Center, David Geffen School of Medicine , Torrance, California.

Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles Medical Center, David Geffen School of Medicine , Torrance, California.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2018 Nov 1;315(5):R1017-R1026. doi: 10.1152/ajpregu.00155.2018. Epub 2018 Aug 8.

Abstract

Considerable epidemiological and experimental evidence supports the concept that the adult chronic lung disease (CLD), is due, at least in part, to aberrations in early lung development in response to an abnormal intrauterine environment; however, the underlying molecular mechanisms remain unknown. We used a well-established rat model of maternal undernutrition (MUN) during pregnancy that results in offspring intrauterine growth restriction (IUGR) and adult CLD to test the hypothesis that in response to MUN, excess maternal glucocorticoids (GCs) program offspring lung development to a CLD phenotype by altering microRNA (miR)-29 expression, which is a key miR in regulating extracellular matrix (ECM) deposition during development and injury-repair. At postnatal day 21 and 5 mo, compared with the control offspring lung, MUN offspring lung miR-29 expression was significantly decreased in conjunction with an elevated expression of multiple downstream target ECM proteins [collagen (COL)1A1, COL3A1, COL4A5, and elastin], at both mRNA and protein levels. Importantly, MUN-induced changes in miR-29 and target gene expressions were at least partially blocked in the lungs of offspring of MUN dams treated with metyrapone, a selective GC synthesis inhibitor. Furthermore, dexamethasone treatment of cultured fetal rat lung fibroblasts significantly induced miR-29 expression along with the suppression of target ECM proteins. These data, along with the previously known role of miR-29 in regulating ECM deposition in vascular tissue in the MUN offspring, suggest miR-29 to be a common mechanistic denominator for the vascular and pulmonary phenotypes in the IUGR offspring, providing a novel potential therapeutic target.

摘要

大量的流行病学和实验证据支持这样一种概念,即成人慢性肺部疾病(CLD)至少部分是由于对异常宫内环境的早期肺部发育异常所致;然而,潜在的分子机制仍不清楚。我们使用了一种已建立的孕期母体营养不良(MUN)大鼠模型,该模型导致胎儿宫内生长受限(IUGR)和成人 CLD,以检验以下假设:即由于 MUN,过多的母体糖皮质激素(GCs)通过改变 microRNA(miR)-29 的表达,将后代肺部发育编程为 CLD 表型,miR-29 是调节发育和损伤修复期间细胞外基质(ECM)沉积的关键 miR。与对照组相比,在出生后 21 天和 5 个月时,MUN 后代肺组织中 miR-29 的表达明显降低,同时多个下游靶 ECM 蛋白[胶原(COL)1A1、COL3A1、COL4A5 和弹性蛋白]的表达升高,mRNA 和蛋白质水平均升高。重要的是,用米托坦(一种选择性 GC 合成抑制剂)治疗 MUN 母鼠的后代,至少部分阻断了 MUN 诱导的 miR-29 和靶基因表达的变化。此外,地塞米松处理培养的胎鼠肺成纤维细胞可显著诱导 miR-29 表达,同时抑制靶 ECM 蛋白。这些数据,以及先前已知的 miR-29 在调节 MUN 后代血管组织中 ECM 沉积的作用,表明 miR-29 是 IUGR 后代血管和肺部表型的共同机制因素,为潜在的治疗靶点提供了新的依据。

相似文献

1
Role of miR-29 in mediating offspring lung phenotype in a rodent model of intrauterine growth restriction.
Am J Physiol Regul Integr Comp Physiol. 2018 Nov 1;315(5):R1017-R1026. doi: 10.1152/ajpregu.00155.2018. Epub 2018 Aug 8.
2
Long-term effects of maternal undernutrition on offspring carotid artery remodeling: role of miR-29c.
J Dev Orig Health Dis. 2015 Aug;6(4):342-9. doi: 10.1017/S2040174415001208. Epub 2015 May 26.
3
Metyrapone alleviates deleterious effects of maternal food restriction on lung development and growth of rat offspring.
Reprod Sci. 2015 Feb;22(2):207-22. doi: 10.1177/1933719114537712. Epub 2014 Jun 10.
5
6
miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids.
Am J Physiol Cell Physiol. 2015 Jul 15;309(2):C117-25. doi: 10.1152/ajpcell.00254.2014. Epub 2015 May 27.
7
Metyrapone blocks maternal food restriction-induced changes in female rat offspring lung development.
Reprod Sci. 2014 Apr;21(4):517-25. doi: 10.1177/1933719113503404. Epub 2013 Sep 10.
8
Impact of diet on the persistence of early vascular remodeling and stiffening induced by intrauterine growth restriction and a maternal high-fat diet.
Am J Physiol Heart Circ Physiol. 2019 Aug 1;317(2):H424-H433. doi: 10.1152/ajpheart.00127.2019. Epub 2019 Jun 21.
9
Maternal protein restriction alters VEGF signaling and decreases pulmonary alveolar in fetal rats.
Int J Clin Exp Pathol. 2014 May 15;7(6):3101-11. eCollection 2014.
10
Excess maternal glucocorticoids in response to in utero undernutrition inhibit offspring angiogenesis.
Reprod Sci. 2014 May;21(5):601-11. doi: 10.1177/1933719113508819. Epub 2013 Oct 23.

引用本文的文献

1
Epigenetic Mechanisms Responsible for the Transgenerational Inheritance of Intrauterine Growth Restriction Phenotypes.
Front Endocrinol (Lausanne). 2022 Mar 31;13:838737. doi: 10.3389/fendo.2022.838737. eCollection 2022.
3
Long Non-coding RNA TUG1 Modulates Expression of Elastin to Relieve Bronchopulmonary Dysplasia via Sponging miR-29a-3p.
Front Pediatr. 2020 Oct 30;8:573099. doi: 10.3389/fped.2020.573099. eCollection 2020.
4
Mechanism underlying increased cardiac extracellular matrix deposition in perinatal nicotine-exposed offspring.
Am J Physiol Heart Circ Physiol. 2020 Sep 1;319(3):H651-H660. doi: 10.1152/ajpheart.00021.2020. Epub 2020 Aug 14.
5
Tranilast induces MiR-200c expression through blockade of RelA/p65 activity in leiomyoma smooth muscle cells.
Fertil Steril. 2020 Jun;113(6):1308-1318. doi: 10.1016/j.fertnstert.2019.12.002. Epub 2020 Mar 18.
6
Cross-talk between miR-29c and transforming growth factor-β3 is mediated by an epigenetic mechanism in leiomyoma.
Fertil Steril. 2019 Dec;112(6):1180-1189. doi: 10.1016/j.fertnstert.2019.07.1324.
7
Prenatal metyrapone treatment modulates neonatal cerebrovascular structure, function, and vulnerability to mild hypoxic-ischemic injury.
Am J Physiol Regul Integr Comp Physiol. 2020 Jan 1;318(1):R1-R16. doi: 10.1152/ajpregu.00145.2019. Epub 2019 Oct 2.

本文引用的文献

1
Regulation of Cell Cycle Regulatory Proteins by MicroRNAs in Uterine Leiomyoma.
Reprod Sci. 2019 Feb;26(2):250-258. doi: 10.1177/1933719118768692. Epub 2018 Apr 11.
4
Early-Life Origins of Chronic Obstructive Pulmonary Disease.
N Engl J Med. 2016 Sep 1;375(9):871-8. doi: 10.1056/NEJMra1603287.
5
MicroRNA epigenetic signatures in human disease.
Arch Toxicol. 2016 Oct;90(10):2405-19. doi: 10.1007/s00204-016-1815-7. Epub 2016 Aug 24.
6
MicroRNAs and liver disease.
J Hum Genet. 2017 Jan;62(1):75-80. doi: 10.1038/jhg.2016.53. Epub 2016 May 26.
7
MicroRNAs in fibrosis: opportunities and challenges.
Arthritis Res Ther. 2016 Jan 13;18:11. doi: 10.1186/s13075-016-0929-x.
8
From the Cradle to the Grave: The Early-Life Origins of Chronic Obstructive Pulmonary Disease.
Am J Respir Crit Care Med. 2016 Jan 1;193(1):1-2. doi: 10.1164/rccm.201509-1801ED.
9
Mechanisms underlying aberrant expression of miR-29c in uterine leiomyoma.
Fertil Steril. 2016 Jan;105(1):236-45.e1. doi: 10.1016/j.fertnstert.2015.09.020. Epub 2015 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验