Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico.
PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico.
Am J Physiol Renal Physiol. 2019 Jan 1;316(1):F146-F158. doi: 10.1152/ajprenal.00288.2018. Epub 2018 Aug 8.
The renal thiazide-sensitive NaCl cotransporter (NCC) is the major salt transport pathway in the distal convoluted tubule of the mammalian nephron. NCC activity is critical for modulation of arterial blood pressure and serum potassium levels. Reduced activity of NCC in genetic diseases results in arterial hypotension and hypokalemia, while increased activity results in genetic diseases featuring hypertension and hyperkalemia. Several hormones and physiological conditions modulate NCC activity through a final intracellular complex pathway involving kinases and ubiquitin ligases. A substantial amount of work has been conducted to understand this pathway in the last 15 yr, but advances over the last 3 yr have helped to begin to understand how these regulatory proteins interact with each other and modulate the activity of this important cotransporter. In this review, we present the current model of NCC regulation by the Cullin 3 protein/Kelch-like 3 protein/with no lysine kinase/STE20-serine-proline alanine-rich kinase (CUL3/KELCH3-WNK-SPAK) pathway. We present a review of all genetically altered mice that have been used to translate most of the proposals made from in vitro experiments into in vivo observations that have helped to elucidate the model at the physiological level. Many questions have been resolved, but some others will require further models to be constructed. In addition, unexpected observations in mice have raised new questions and identified regulatory pathways that were previously unknown.
肾脏噻嗪类敏感的 NaCl 共转运蛋白(NCC)是哺乳动物肾单位远曲小管中的主要盐转运途径。NCC 的活性对调节动脉血压和血清钾水平至关重要。遗传疾病中 NCC 活性降低会导致动脉低血压和低钾血症,而活性增加则会导致高血压和高钾血症的遗传疾病。几种激素和生理条件通过涉及激酶和泛素连接酶的最终细胞内复杂途径来调节 NCC 活性。在过去的 15 年中,已经进行了大量的工作来了解这一途径,但在过去 3 年中的进展有助于开始理解这些调节蛋白如何相互作用并调节这种重要共转运蛋白的活性。在这篇综述中,我们提出了 Cullin 3 蛋白/ Kelch 样 3 蛋白/无赖氨酸激酶/STE20-丝氨酸-脯氨酸-丙氨酸丰富激酶(CUL3/ KELCH3-WNK-SPAK)途径调节 NCC 的当前模型。我们回顾了所有经过基因改变的小鼠,这些小鼠被用于将大多数从体外实验中提出的建议转化为有助于在生理水平上阐明该模型的体内观察结果。许多问题已经得到解决,但其他一些问题需要进一步构建模型。此外,在小鼠中出现的意外观察结果提出了新的问题,并确定了以前未知的调节途径。