Suppr超能文献

WNK/SPAK 通路对肾脏 NaCl 共转运蛋白的调节:遗传修饰动物模型的启示。

Regulation of the renal NaCl cotransporter by the WNK/SPAK pathway: lessons learned from genetically altered animals.

机构信息

Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico.

PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico.

出版信息

Am J Physiol Renal Physiol. 2019 Jan 1;316(1):F146-F158. doi: 10.1152/ajprenal.00288.2018. Epub 2018 Aug 8.

Abstract

The renal thiazide-sensitive NaCl cotransporter (NCC) is the major salt transport pathway in the distal convoluted tubule of the mammalian nephron. NCC activity is critical for modulation of arterial blood pressure and serum potassium levels. Reduced activity of NCC in genetic diseases results in arterial hypotension and hypokalemia, while increased activity results in genetic diseases featuring hypertension and hyperkalemia. Several hormones and physiological conditions modulate NCC activity through a final intracellular complex pathway involving kinases and ubiquitin ligases. A substantial amount of work has been conducted to understand this pathway in the last 15 yr, but advances over the last 3 yr have helped to begin to understand how these regulatory proteins interact with each other and modulate the activity of this important cotransporter. In this review, we present the current model of NCC regulation by the Cullin 3 protein/Kelch-like 3 protein/with no lysine kinase/STE20-serine-proline alanine-rich kinase (CUL3/KELCH3-WNK-SPAK) pathway. We present a review of all genetically altered mice that have been used to translate most of the proposals made from in vitro experiments into in vivo observations that have helped to elucidate the model at the physiological level. Many questions have been resolved, but some others will require further models to be constructed. In addition, unexpected observations in mice have raised new questions and identified regulatory pathways that were previously unknown.

摘要

肾脏噻嗪类敏感的 NaCl 共转运蛋白(NCC)是哺乳动物肾单位远曲小管中的主要盐转运途径。NCC 的活性对调节动脉血压和血清钾水平至关重要。遗传疾病中 NCC 活性降低会导致动脉低血压和低钾血症,而活性增加则会导致高血压和高钾血症的遗传疾病。几种激素和生理条件通过涉及激酶和泛素连接酶的最终细胞内复杂途径来调节 NCC 活性。在过去的 15 年中,已经进行了大量的工作来了解这一途径,但在过去 3 年中的进展有助于开始理解这些调节蛋白如何相互作用并调节这种重要共转运蛋白的活性。在这篇综述中,我们提出了 Cullin 3 蛋白/ Kelch 样 3 蛋白/无赖氨酸激酶/STE20-丝氨酸-脯氨酸-丙氨酸丰富激酶(CUL3/ KELCH3-WNK-SPAK)途径调节 NCC 的当前模型。我们回顾了所有经过基因改变的小鼠,这些小鼠被用于将大多数从体外实验中提出的建议转化为有助于在生理水平上阐明该模型的体内观察结果。许多问题已经得到解决,但其他一些问题需要进一步构建模型。此外,在小鼠中出现的意外观察结果提出了新的问题,并确定了以前未知的调节途径。

相似文献

1
Regulation of the renal NaCl cotransporter by the WNK/SPAK pathway: lessons learned from genetically altered animals.
Am J Physiol Renal Physiol. 2019 Jan 1;316(1):F146-F158. doi: 10.1152/ajprenal.00288.2018. Epub 2018 Aug 8.
2
Role of KLHL3 and dietary K in regulating KS-WNK1 expression.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F734-F747. doi: 10.1152/ajprenal.00575.2020. Epub 2021 Mar 8.
3
Distal convoluted tubule-specific disruption of the COP9 signalosome but not its regulatory target cullin 3 causes tubular injury.
Am J Physiol Renal Physiol. 2024 Oct 1;327(4):F667-F682. doi: 10.1152/ajprenal.00138.2024. Epub 2024 Aug 29.
4
Decreased KLHL3 expression is involved in the activation of WNK-OSR1/SPAK-NCC cascade in type 1 diabetic mice.
Pflugers Arch. 2021 Feb;473(2):185-196. doi: 10.1007/s00424-020-02509-8. Epub 2021 Jan 11.
6
Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC.
Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F734-F745. doi: 10.1152/ajprenal.00145.2018. Epub 2018 May 30.
7
WNK-SPAK/OSR1-NCC kinase signaling pathway as a novel target for the treatment of salt-sensitive hypertension.
Acta Pharmacol Sin. 2021 Apr;42(4):508-517. doi: 10.1038/s41401-020-0474-7. Epub 2020 Jul 28.
8
WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia.
Am J Physiol Renal Physiol. 2020 Jan 1;318(1):F216-F228. doi: 10.1152/ajprenal.00232.2019. Epub 2019 Nov 18.
10
Potassium depletion stimulates Na-Cl cotransporter phosphorylation and inactivation of the ubiquitin ligase Kelch-like 3.
Biochem Biophys Res Commun. 2016 Nov;480(4):745-751. doi: 10.1016/j.bbrc.2016.10.127. Epub 2016 Oct 29.

引用本文的文献

2
Thirty years of the NaCl cotransporter: from cloning to physiology and structure.
Am J Physiol Renal Physiol. 2023 Oct 1;325(4):F479-F490. doi: 10.1152/ajprenal.00114.2023. Epub 2023 Aug 10.
3
Aldosterone: Renal Action and Physiological Effects.
Compr Physiol. 2023 Mar 30;13(2):4409-4491. doi: 10.1002/cphy.c190043.
4
A narrative review of Hyporeninemic hypertension-an indicator for monogenic forms of hypertension.
Pediatr Med. 2022 May;5. doi: 10.21037/pm-21-48. Epub 2022 May 28.
6
Molecular mechanisms for the modulation of blood pressure and potassium homeostasis by the distal convoluted tubule.
EMBO Mol Med. 2022 Feb 7;14(2):e14273. doi: 10.15252/emmm.202114273. Epub 2021 Dec 20.
7
Role of KLHL3 and dietary K in regulating KS-WNK1 expression.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F734-F747. doi: 10.1152/ajprenal.00575.2020. Epub 2021 Mar 8.
8
Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney.
Cells. 2020 Jul 9;9(7):1644. doi: 10.3390/cells9071644.
9
A rare case of hyporeninemic hypertension: Answers.
Pediatr Nephrol. 2021 Mar;36(3):569-573. doi: 10.1007/s00467-020-04667-4. Epub 2020 Jun 30.

本文引用的文献

1
The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway.
J Am Soc Nephrol. 2018 Jul;29(7):1838-1848. doi: 10.1681/ASN.2017111155. Epub 2018 May 30.
2
Kidney-specific WNK1 isoform (KS-WNK1) is a potent activator of WNK4 and NCC.
Am J Physiol Renal Physiol. 2018 Sep 1;315(3):F734-F745. doi: 10.1152/ajprenal.00145.2018. Epub 2018 May 30.
3
Mutant Cullin 3 causes familial hyperkalemic hypertension via dominant effects.
JCI Insight. 2017 Dec 21;2(24):96700. doi: 10.1172/jci.insight.96700.
4
Potassium-regulated distal tubule WNK bodies are kidney-specific WNK1 dependent.
Mol Biol Cell. 2018 Feb 15;29(4):499-509. doi: 10.1091/mbc.E17-08-0529. Epub 2017 Dec 13.
6
WNK4 is indispensable for the pathogenesis of pseudohypoaldosteronism type II caused by mutant KLHL3.
Biochem Biophys Res Commun. 2017 Sep 23;491(3):727-732. doi: 10.1016/j.bbrc.2017.07.121. Epub 2017 Jul 22.
7
Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules.
J Am Soc Nephrol. 2017 Sep;28(9):2597-2606. doi: 10.1681/ASN.2016090948. Epub 2017 Apr 25.
8
Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E879-E886. doi: 10.1073/pnas.1620315114. Epub 2017 Jan 17.
9
Potassium Sensing by Renal Distal Tubules Requires Kir4.1.
J Am Soc Nephrol. 2017 Jun;28(6):1814-1825. doi: 10.1681/ASN.2016090935. Epub 2017 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验